Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis (original) (raw)
References
Chu, D.H. Overview of biology, development and structure of skin. In Fitzpatrick's Dermatology in General Medicine, 7th edn. Vol. 1 (eds. Wolff, K. et al.) 57–73 (McGraw-Hill, New York, 2008). Google Scholar
Schneider, M.R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol.19, R132–R142 (2009). ArticleCAS Google Scholar
Chuong, C.M. Regenerative biology: new hair from healing wounds. Nature447, 265–266 (2007). ArticleCAS Google Scholar
Jones, P.H., Simons, B.D. & Watt, F.M. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell1, 371–381 (2007). ArticleCAS Google Scholar
Watt, F.M. & Jensen, K.B. Epidermal stem cell diversity and quiescence. EMBO Mol. Med.1, 260–267 (2009). ArticleCAS Google Scholar
Jones, P.H. & Watt, F.M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell73, 713–724 (1993). ArticleCAS Google Scholar
Kamimura, J., Lee, D., Baden, H.P., Brissette, J. & Dotto, G.P. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential. J. Invest. Dermatol.109, 534–540 (1997). ArticleCAS Google Scholar
Lo Celso, C. et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells26, 1241–1252 (2008). ArticleCAS Google Scholar
Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet.40, 1291–1299 (2008). ArticleCAS Google Scholar
Silva-Vargas, V. et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9, 121–131 (2005). ArticleCAS Google Scholar
Jensen, K.B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell4, 427–439 (2009). ArticleCAS Google Scholar
Jensen, K.B. & Watt, F.M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl. Acad. Sci. USA103, 11958–11963 (2006). ArticleCAS Google Scholar
Morris, R.J. Procedure for harvesting epidermal cells from the dorsal epidermis of adult mice for primary cell culture in 'high calcium' defined medium. In The Keratinocyte Handbook, 1st edn. (eds. Leigh, I.M., Lane, E.B. & Watt, F.M.) 25–31 (Cambridge University Press, Cambridge, UK, 1994).
Romero, M.R., Carroll, J.M. & Watt, F.M. Analysis of cultured keratinocytes from a transgenic mouse model of psoriasis: effects of suprabasal integrin expression on keratinocyte adhesion, proliferation and terminal differentiation. Exp. Dermatol.8, 53–67 (1999). ArticleCAS Google Scholar
Rheinwald, J.G. Human epidermal keratinocyte cell culture and xenograft systems: applications in the detection of potential chemical carcinogens and the study of epidermal transformation. Prog. Clin. Biol. Res.298, 113–125 (1989). CASPubMed Google Scholar
Rheinwald, J.G. & Green, H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell6, 317–330 (1975). ArticleCAS Google Scholar
Watt, F.M., Broad, S. & Prowse, D.M. Cultivation and retroviral infection of human epidermal keratinocytes. In Cell Biology: A Laboratory Handbook 3rd edn., Vol. 1 (ed. Celis, J.E.) 133–138 (Elsevier, Amsterdam, the Netherlands, 2006).
Owens, D.M., Romero, M.R., Gardner, C. & Watt, F.M. Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J. Cell. Sci.116, 3783–3791 (2003). ArticleCAS Google Scholar
Popova, N.V. & Morris, R.J. Genetic regulation of mouse stem cells: identification of two keratinocyte stem cell regulatory loci. Curr. Top Microbiol. Immunol.280, 111–137 (2004). CASPubMed Google Scholar
Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA84, 2302–2306 (1987). ArticleCAS Google Scholar
Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol.10, 491–500 (2000). ArticleCAS Google Scholar
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl. Acad. Sci. USA102, 14677–14682 (2005). ArticleCAS Google Scholar
Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22, 411–417 (2004). ArticleCAS Google Scholar
Weinberg, W.C. et al. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J. Invest. Dermatol.100, 229–236 (1993). ArticleCAS Google Scholar
Yuspa, S.H., Morgan, D.L., Walker, R.J. & Bates, R.R. The growth of fetal mouse skin in cell culture and transplantation to F1 mice. J. Invest. Dermatol.55, 379–389 (1970). ArticleCAS Google Scholar
Fusenig, N.E. et al. Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol.81, 168s–175s (1983). ArticleCAS Google Scholar
Schmidt, G.H., Blount, M.A. & Ponder, B.A. Immunochemical demonstration of the clonal organization of chimaeric mouse epidermis. Development100, 535–541 (1987). CASPubMed Google Scholar
Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W. & Watt, F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development136, 2815–2823 (2009). ArticleCAS Google Scholar
Jones, P.H., Harper, S. & Watt, F.M. Stem cell patterning and fate in human epidermis. Cell80, 83–93 (1995). ArticleCAS Google Scholar
Tani, H., Morris, R.J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA97, 10960–10965 (2000). ArticleCAS Google Scholar
Trempus, C.S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol.120, 501–511 (2003). CAS Google Scholar
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCAS Google Scholar
Triel, C., Vestergaard, M.E., Bolund, L., Jensen, T.G. & Jensen, U.B. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp. Cell Res.295, 79–90 (2004). ArticleCAS Google Scholar
Albert, M.R., Foster, R.A. & Vogel, J.C. Murine epidermal label-retaining cells isolated by flow cytometry do not express the stem cell markers CD34, Sca-1, or Flk-1. J. Invest. Dermatol.117, 943–948 (2001). ArticleCAS Google Scholar
Jensen, U.B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell. Sci.121, 609–617 (2008). ArticleCAS Google Scholar
Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell. Sci.111, 3179–3188 (1998). CASPubMed Google Scholar
Nijhof, J.G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development133, 3027–3037 (2006). ArticleCAS Google Scholar
Jahoda, C.A., Horne, K.A. & Oliver, R.F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature311, 560–562 (1984). ArticleCAS Google Scholar
Ito, Y. et al. Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J. Invest. Dermatol.127, 1052–1060 (2007). ArticleCAS Google Scholar
Berta, M.A., Baker, C.M., Cottle, D.L. & Watt, F.M. Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Mol. Med.2, 16–25 (2009). Article Google Scholar