Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis (original) (raw)

References

  1. Chu, D.H. Overview of biology, development and structure of skin. In Fitzpatrick's Dermatology in General Medicine, 7th edn. Vol. 1 (eds. Wolff, K. et al.) 57–73 (McGraw-Hill, New York, 2008).
    Google Scholar
  2. Schneider, M.R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132–R142 (2009).
    Article CAS Google Scholar
  3. Chuong, C.M. Regenerative biology: new hair from healing wounds. Nature 447, 265–266 (2007).
    Article CAS Google Scholar
  4. Jones, P.H., Simons, B.D. & Watt, F.M. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1, 371–381 (2007).
    Article CAS Google Scholar
  5. Watt, F.M. & Jensen, K.B. Epidermal stem cell diversity and quiescence. EMBO Mol. Med. 1, 260–267 (2009).
    Article CAS Google Scholar
  6. Jones, P.H. & Watt, F.M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993).
    Article CAS Google Scholar
  7. Kamimura, J., Lee, D., Baden, H.P., Brissette, J. & Dotto, G.P. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential. J. Invest. Dermatol. 109, 534–540 (1997).
    Article CAS Google Scholar
  8. Lo Celso, C. et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells 26, 1241–1252 (2008).
    Article CAS Google Scholar
  9. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).
    Article CAS Google Scholar
  10. Silva-Vargas, V. et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell 9, 121–131 (2005).
    Article CAS Google Scholar
  11. Jensen, K.B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009).
    Article CAS Google Scholar
  12. Jensen, K.B. & Watt, F.M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl. Acad. Sci. USA 103, 11958–11963 (2006).
    Article CAS Google Scholar
  13. Morris, R.J. Procedure for harvesting epidermal cells from the dorsal epidermis of adult mice for primary cell culture in 'high calcium' defined medium. In The Keratinocyte Handbook, 1st edn. (eds. Leigh, I.M., Lane, E.B. & Watt, F.M.) 25–31 (Cambridge University Press, Cambridge, UK, 1994).
  14. Romero, M.R., Carroll, J.M. & Watt, F.M. Analysis of cultured keratinocytes from a transgenic mouse model of psoriasis: effects of suprabasal integrin expression on keratinocyte adhesion, proliferation and terminal differentiation. Exp. Dermatol. 8, 53–67 (1999).
    Article CAS Google Scholar
  15. Rheinwald, J.G. Human epidermal keratinocyte cell culture and xenograft systems: applications in the detection of potential chemical carcinogens and the study of epidermal transformation. Prog. Clin. Biol. Res. 298, 113–125 (1989).
    CAS PubMed Google Scholar
  16. Rheinwald, J.G. & Green, H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 6, 317–330 (1975).
    Article CAS Google Scholar
  17. Watt, F.M., Broad, S. & Prowse, D.M. Cultivation and retroviral infection of human epidermal keratinocytes. In Cell Biology: A Laboratory Handbook 3rd edn., Vol. 1 (ed. Celis, J.E.) 133–138 (Elsevier, Amsterdam, the Netherlands, 2006).
  18. Owens, D.M., Romero, M.R., Gardner, C. & Watt, F.M. Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J. Cell. Sci. 116, 3783–3791 (2003).
    Article CAS Google Scholar
  19. Popova, N.V. & Morris, R.J. Genetic regulation of mouse stem cells: identification of two keratinocyte stem cell regulatory loci. Curr. Top Microbiol. Immunol. 280, 111–137 (2004).
    CAS PubMed Google Scholar
  20. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA 84, 2302–2306 (1987).
    Article CAS Google Scholar
  21. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).
    Article CAS Google Scholar
  22. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl. Acad. Sci. USA 102, 14677–14682 (2005).
    Article CAS Google Scholar
  23. Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).
    Article CAS Google Scholar
  24. Weinberg, W.C. et al. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J. Invest. Dermatol. 100, 229–236 (1993).
    Article CAS Google Scholar
  25. Yuspa, S.H., Morgan, D.L., Walker, R.J. & Bates, R.R. The growth of fetal mouse skin in cell culture and transplantation to F1 mice. J. Invest. Dermatol. 55, 379–389 (1970).
    Article CAS Google Scholar
  26. Fusenig, N.E. et al. Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 81, 168s–175s (1983).
    Article CAS Google Scholar
  27. Schmidt, G.H., Blount, M.A. & Ponder, B.A. Immunochemical demonstration of the clonal organization of chimaeric mouse epidermis. Development 100, 535–541 (1987).
    CAS PubMed Google Scholar
  28. Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W. & Watt, F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136, 2815–2823 (2009).
    Article CAS Google Scholar
  29. Jones, P.H., Harper, S. & Watt, F.M. Stem cell patterning and fate in human epidermis. Cell 80, 83–93 (1995).
    Article CAS Google Scholar
  30. Tani, H., Morris, R.J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 97, 10960–10965 (2000).
    Article CAS Google Scholar
  31. Trempus, C.S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).
    CAS Google Scholar
  32. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).
    Article CAS Google Scholar
  33. Triel, C., Vestergaard, M.E., Bolund, L., Jensen, T.G. & Jensen, U.B. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp. Cell Res. 295, 79–90 (2004).
    Article CAS Google Scholar
  34. Albert, M.R., Foster, R.A. & Vogel, J.C. Murine epidermal label-retaining cells isolated by flow cytometry do not express the stem cell markers CD34, Sca-1, or Flk-1. J. Invest. Dermatol. 117, 943–948 (2001).
    Article CAS Google Scholar
  35. Jensen, U.B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell. Sci. 121, 609–617 (2008).
    Article CAS Google Scholar
  36. Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell. Sci. 111, 3179–3188 (1998).
    CAS PubMed Google Scholar
  37. Nijhof, J.G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133, 3027–3037 (2006).
    Article CAS Google Scholar
  38. Jahoda, C.A., Horne, K.A. & Oliver, R.F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560–562 (1984).
    Article CAS Google Scholar
  39. Ito, Y. et al. Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J. Invest. Dermatol. 127, 1052–1060 (2007).
    Article CAS Google Scholar
  40. Berta, M.A., Baker, C.M., Cottle, D.L. & Watt, F.M. Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Mol. Med. 2, 16–25 (2009).
    Article Google Scholar

Download references