Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy (original) (raw)

References

  1. Chandel, N.S. Mitochondria as signalling organelles. BMC Biol. 12, 34 (2014).
    Article Google Scholar
  2. Westermann, B. Mitochondrial fission and fusion in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).
    Article CAS Google Scholar
  3. Chan, D.C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 256–287 (2012).
    Article Google Scholar
  4. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).
    Article CAS Google Scholar
  5. Willems, P.H.G.M., Rossignol, R., Dieteren, C.E.J., Murphy, M.P. & Koopman, W.J.H. Redox regulation and mitochondrial dynamics. Cell Metab. 22, 207–218 (2015).
    Article CAS Google Scholar
  6. Mitchell, P. & Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137–179 (1967).
    Article CAS Google Scholar
  7. Koopman, W.J.H., Distelmaier, F., Esseling, J.J., Smeitink, J.A.M. & Willems, P.H.G.M. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods 46, 304–311 (2008).
    Article CAS Google Scholar
  8. Iannetti, E. et al. High-content and high-throughput analysis of mitochondrial dynamics. Int. J. Biochem. Cell Biol. 63, 66–70 (2015).
    Article CAS Google Scholar
  9. Mishra, P. & Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387.
  10. Schrepfer, E. & Scorrano, L. Mitofusins, from mitochondria to metabolism. Mol. Cell 61, 683–694 (2016).
    Article CAS Google Scholar
  11. Toyama, E.Q. et al. AMPK-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).
    Article CAS Google Scholar
  12. Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 (2016).
    Article CAS Google Scholar
  13. Koopman, W.J.H., Willems, P.H.G.M. & Smeitink, J.A.M. Monogenic mitochondrial disorders. N. Eng. J. Med. 366, 1132–1141 (2012).
    Article CAS Google Scholar
  14. Koopman, W.J.H., Distelmaier, F., Smeitink, J.A.M. & Willems, P.H.G.M. OXPHOS mutations and neurodegeneration. EMBO J. 32, 9–29 (2013).
    Article CAS Google Scholar
  15. Tronstad, K.J. et al. Regulation and quantification of cellular mitochondrial morphology and content. Curr. Pharm. Des. 20, 5643–5652 (2014).
    Article Google Scholar
  16. Rowland, A.A. & Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).
    Article CAS Google Scholar
  17. Picard, M., Shirihai, O.S., Gentil, B.J. & Burelle, Y. Mitochondrial morphology transitions and functions: implications for retrograde signalling? Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R393–R406 (2013).
    Article CAS Google Scholar
  18. Koopman, W.J.H. et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 12, 1431–1470 (2010).
    Article CAS Google Scholar
  19. Koopman, W.J.H. et al. Partial complex I inhibition decreases mitochondrial motility and increases matrix protein diffusion as revealed by fluorescence correlation spectroscopy. Biochim. Biophys. Acta 1767, 940–947 (2007).
    Article CAS Google Scholar
  20. Koopman, W.J.H. et al. Inhibition of complex I of the electron transport chain causes oxygen radical-mediated mitochondrial outgrowth. Am. J. Physiol. Cell Physiol. 288, C1440–C1450 (2005).
    Article CAS Google Scholar
  21. Koopman, W.J.H. et al. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am. J. Physiol. Cell Physiol. 289, C881–C890 (2005).
    Article CAS Google Scholar
  22. Koopman, W.J.H., Visch, H.J., Smeitink, J.A.M. & Willems, P.H.G.M. Simultaneous, quantitative measurement and automated analysis of mitochondrial morphology, mass, potential and motility in living human skin fibroblasts. Cytometry A 69A, 1–12 (2006).
    Article Google Scholar
  23. Distelmaier, F. et al. Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A 73, 129–138 (2008).
    Article Google Scholar
  24. Willems, P.H.G.M., Smeitink, J.A.M. & Koopman, W.J.H. Mitochondrial dynamics in human NADH:oxidoreductase deficiency. Int. J. Biochem. Cell Biol. 41, 1773–1783 (2009).
    Article CAS Google Scholar
  25. Nooteboom, M., Forkink, M., Willems, P.H.G.M. & Koopman, W.J.H. Live-cell quantification of mitochondrial functional parameters. in Neuromethods 70: Visualization Techniques, from Immunohistochemistry to Magnetic Resonance Imaging (ed. Badoer, E.) Chapter 6 (Springer, New York, 2012).
  26. Blanchet, L., Buydens, L.M.C., Smeitink, J.A.M., Willems, P.H.G.M. & Koopman, W.J.H. Isolated mitochondrial complex I deficiency: explorative pattern analysis of patient cell parameters. Curr. Pharm. Des. 17, 4023–4033 (2011).
    Article CAS Google Scholar
  27. Blanchet, L. et al. Analysis of small molecule phenotypic effects using combined mitochondrial morpho-functional fingerprinting and machine learning. Sci. Rep. 5, 8035 (2015).
    Article CAS Google Scholar
  28. Koopman, W.J.H. et al. Human NADH: oxidoreductase deficiency: radical changes in mitochondrial morphology? Am. J. Physiol. Cell Physiol. 293, C22–C29 (2007).
    Article CAS Google Scholar
  29. Koopman, W.J.H. et al. Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. Am. J. Physiol. Cell Physiol. 294, C1124–C1132 (2008).
    Article CAS Google Scholar
  30. Lansing-Taylor, D. Past, present and future of high content screening and the field of cellomics. in High Content Screening: A Powerful Approach to Systems Cell Biology and Drug Discovery (eds. Lansing-Taylor, D., Haskins, J.R. & Giuliano, K.A.) (Humana Press, Totowa, NJ, USA, 2007).
  31. Feng, Y., Mitchison, T.J., Bender, A., Young, D.W. & Tallarico, J.A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567–578 (2009).
    Article CAS Google Scholar
  32. Zanella, F., Lorens, J.B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).
    Article CAS Google Scholar
  33. Bast, A. & Haenen, G.R.M.M. Ten misconceptions about antioxidants. Trends Pharmacol. Sci. 34, 430–436 (2013).
    Article CAS Google Scholar
  34. Wiemerslage, L. & Lee, D. Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J. Neurosci. Methods 262, 56–65 (2016).
    Article CAS Google Scholar
  35. Sommer, C. & Gehrlich, D.W. Machine learning in cell biology – teaching computers to recognize phenotypes. J. Cell Sci. 126, 5529–5539 (2013).
    Article CAS Google Scholar
  36. Peng, J.Y. et al. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput. Biol. 7, e1002212 (2011).
    Article CAS Google Scholar
  37. Reis, Y. et al. Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. PLoS One 7, e28694 (2012).
    Article CAS Google Scholar
  38. Ahmad, T. et al. Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis. 4, e461 (2013).
    Article CAS Google Scholar
  39. Leonard, A.P. et al. Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim. Biophys. Acta 1853, 348–360 (2015).
    Article CAS Google Scholar
  40. Nikolaisen, J. et al. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 9, e101365 (2014).
    Article Google Scholar
  41. Farrand, L. et al. An improved quantitative approach for the assessment of mitochondrial fragmentation in chemoresistant ovarian cancer cells. PLoS One 8, e74008 (2014).
    Article Google Scholar
  42. Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9, 586–596 (2014).
    Article CAS Google Scholar
  43. Lautenschläger, J. et al. Novel computer vision algorithm for the reliable analysis of organelle morphology in whole cell 3D images - A pilot study for the quantitative evaluation of mitochondrial fragmentation in amyotrophic lateral sclerosis. Mitochondrion 25, 49–59 (2015).
    Article Google Scholar
  44. Lihavainen, E., Kislin, M., Toptunov, D., Khiroug, L. & Ribeiro, A.S. Automatic quantification of mitochondrial fragmentation from two-photon microscope images of mouse brain tissue. J. Microsc. 260, 338–351 (2015).
    Article CAS Google Scholar
  45. Hugelier, S. et al. Sparse deconvolution of high-density super-resolution images. Sci. Rep. 6, 21413 (2016).
    Article CAS Google Scholar
  46. McClatchey, P.M., Keller, A.C., Bouchard, R., Knaub, L.A. & Reusch, J.E.B. Fully automated software for quantitative measurements of mitochondrial morphology. Mitochondrion 26, 58–71 (2016).
    Article CAS Google Scholar
  47. Giuly, R.J., Martone, M.E. & Ellisman, M.H. Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets. BMC Bioinformatics 13, 29 (2012).
    Article Google Scholar
  48. Lihavainen, E., Makela, J., Spelbrink, J.N. & Ribeiro, A.S. Mitoe: automatic analysis of mitochondrial dynamics. Bioinformatics 28, 1050–1051 (2012).
    Article CAS Google Scholar
  49. Mumcuoglu, E.U. et al. Computerized detection and segmentation of mitochondria on electron microscope images. J. Microsc. 246, 248–265 (2012).
    Article CAS Google Scholar
  50. Dietlmaier, J., Ghita, O., Duessmann, H., Prehn, J.H. & Whelan, P.F. Unsupervised mitochondria segmentation using recursive spectral clustering and adaptive similarity models. J. Struct. Biol. 184, 401–408 (2013).
    Article Google Scholar
  51. Bros, H., Hauser, A., Niesner, R. & Infante-Duarte, C. Assessing mitochondrial movement within neurons: manual versus automated tracking methods. Traffic 16, 906–917 (2015).
    Article CAS Google Scholar
  52. Kandel, J., Chou, P. & Eckmann, D.M. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity. Biotechnol. Bioeng. 112, 1395–1405 (2015).
    Article CAS Google Scholar
  53. Tasel, S.F., Mumcuoglu, E.U., Hassanpour, R.Z. & Perkins, G. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria. J. Struct. Biol. 194, 253–271 (2016).
    Article CAS Google Scholar
  54. Forkink, M. et al. Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochim. Biophys. Acta 1837, 1247–1256 (2014).
    Article CAS Google Scholar
  55. Nicholls, D.G. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J. Biol. Chem. 281, 14864–14874 (2006).
    Article CAS Google Scholar
  56. Hüser, J., Rechenmacher, C.E. & Blatter, L.A. Imaging the permeability transition in single mitochondria. Biophys. J. 74, 2129–2137 (1998).
    Article Google Scholar
  57. Falchi, A.M., Isola, R., Diana, A., Putzolu, M. & Diaz, G. Characterization of depolarization and repolarization phases of mitochondrial membrane potential fluctuations induced by tetramethylrhodamine methyl ester photoactivation. FEBS J. 272, 1649–1659 (2005).
    Article CAS Google Scholar
  58. Blanchet, L., Grefte, S., Smeitink, J.A.M., Willems, P.H.G.M. & Koopman, W.J.H. Photo-induction and automated quantification of reversible mitochondrial permeability transition pore opening in primary mouse myotubes. PLoS One 9, e114090 (2014).
    Article Google Scholar
  59. Wang, X.M. et al. A new microcellular cytotoxicity test based upon calcein AM release. Hum. Immunol. 37, 264–270 (1993).
    Article CAS Google Scholar
  60. Homolya, L. et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268, 21496–21496 (1993).
    Google Scholar
  61. Sternberg, S.R. Biomedical image processing. Computer 16, 22–34 (1983).
    Article Google Scholar
  62. Russ, J.C. & Neal, F.B. The Image Processing Handbook 7th edn. (CRC press, Boca Raton, FL, 2016).
  63. Bray, M.A. & Carpenter, A. Advanced assay development guidelines for image-based high content screening and analysis. in Assay Guidance Manual (eds. Sittampalam, G.S. et al.) (Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD, 2004).
  64. Tigges, J. et al. The hallmarks of fibroblast aging. Mech. Ageing Dev. 138, 26–44 (2014).
    Article CAS Google Scholar
  65. Massart, D.L. et al. Handbook of Chemometrics and Qualimetrics (Amsterdam, the Netherlands: Elsevier, 1997).
  66. Tukey, J.W. Exploratory Data Analysis 1st edn. (Addison-Wesley, Boston, MA, 1977).
  67. Ringnér, M. What is principal component analysis? Nat. Biotechol. 26, 303–304 (2008).
    Article Google Scholar
  68. Bro, R. & Smilde, A.K. Principal component analysis. Anal. Methods 6, 2812–2831 (2014).
    Article CAS Google Scholar
  69. Brown, J.D. Choosing the right number of components of factors in PCA and EFA. Shiken: JALT testing & evaluation SIG Newsletter 13(2), 19–23 (2009).
    Google Scholar
  70. Lemasters, J.J. & Ramshesh, V.K. Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell. Biol. 80, 283–295 (2007).
    Article CAS Google Scholar
  71. Eliceiri, K.W. et al. Biological imaging software tools. Nat. Methods 9, 697–710 (2012).
    Article CAS Google Scholar
  72. Kitami, T. et al. A chemical screen probing the relationship between mitochondrial content and cell size. PLoS One 7, e33755 (2012).
    Article CAS Google Scholar
  73. Gonzalez, R.C. & Woods, R.E. Digital Image Processing 3rd edn. (Pearson Prentice Hall, Upper Saddle River, NJ, 2008).

Download references