Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer16, 99–109 (2016). CASPubMed Google Scholar
Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat. Rev. Cancer8, 121–132 (2008). CASPubMed Google Scholar
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med.374, 311–322 (2016). CASPubMed Google Scholar
Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol.9, 231–241 (2008). CASPubMed Google Scholar
Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol.15, 49–63 (2014). CASPubMed Google Scholar
Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol.11, 621–632 (2010). CASPubMed Google Scholar
Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998). CASPubMed Google Scholar
Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94, 481–490 (1998). CASPubMed Google Scholar
Tait, S. W., Ichim, G. & Green, D. R. Die another way—non-apoptotic mechanisms of cell death. J. Cell Sci.127, 2135–2144 (2014). CASPubMedPubMed Central Google Scholar
Gama, V. et al. The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Sci.Signal.7, ra67 (2014). PubMedPubMed Central Google Scholar
Wright, K. M., Linhoff, M. W., Potts, P. R. & Deshmukh, M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J. Cell Biol.167, 303–313 (2004). CASPubMedPubMed Central Google Scholar
Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell129, 983–997 (2007). CASPubMed Google Scholar
Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell44, 517–531 (2011). CASPubMedPubMed Central Google Scholar
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435, 677–681 (2005). CASPubMed Google Scholar
Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature348, 331–333 (1990). CASPubMed Google Scholar
Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature335, 440–442 (1988). CASPubMed Google Scholar
Finch, A. et al. Bcl-xL gain of function and p19 ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell10, 113–120 (2006). CASPubMed Google Scholar
Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature352, 345–347 (1991). CASPubMed Google Scholar
Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science334, 1129–1133 (2011). PubMed Google Scholar
Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell160, 977–989 (2015). CASPubMedPubMed Central Google Scholar
Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene26, 1324–1337 (2007). CASPubMedPubMed Central Google Scholar
Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell9, 351–365 (2006). CASPubMed Google Scholar
Lopez, J. & Tait, S. W. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer112, 957–962 (2015). CASPubMedPubMed Central Google Scholar
Wyllie, A. H. The biology of cell death in tumours. Anticancer Res.5, 131–136 (1985). CASPubMed Google Scholar
Naresh, K. N., Lakshminarayanan, K., Pai, S. A. & Borges, A. M. Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer91, 578–584 (2001). CASPubMed Google Scholar
Jalalinadoushan, M., Peivareh, H. & Azizzadeh Delshad, A. Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urol. J.1, 177–179 (2004). PubMed Google Scholar
Sun, B. et al. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur. J. Cancer Prev.15, 258–265 (2006). CASPubMed Google Scholar
Alcaide, J. et al. The role and prognostic value of apoptosis in colorectal carcinoma. BMC Clin. Pathol.13, 24 (2013). PubMedPubMed Central Google Scholar
De Jong, J. S., van Diest, P. J. & Baak, J. P. Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br. J. Cancer82, 368–373 (2000). CASPubMed Google Scholar
Dawson, S. J. et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer103, 668–675 (2010). CASPubMedPubMed Central Google Scholar
Anagnostou, V. K. et al. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer10, 186 (2010). PubMedPubMed Central Google Scholar
Renouf, D. J. et al. BCL-2 expression is prognostic for improved survival in non-small cell lung cancer. J. Thorac. Oncol.4, 486–491 (2009). PubMed Google Scholar
Hogarth, L. A. & Hall, A. G. Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood93, 2671–2678 (1999). CASPubMed Google Scholar
Kaparou, M. et al. Enhanced levels of the apoptotic BAX/BCL-2 ratio in children with acute lymphoblastic leukemia and high-risk features. Genet. Mol. Biol.36, 7–11 (2013). CASPubMedPubMed Central Google Scholar
Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest.117, 112–121 (2007). CASPubMedPubMed Central Google Scholar
Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell7, 491–501 (2004). CASPubMed Google Scholar
Huh, J. R., Guo, M. & Hay, B. A. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol.14, 1262–1266 (2004). CASPubMed Google Scholar
Perez-Garijo, A., Martin, F. A. & Morata, G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development131, 5591–5598 (2004). CASPubMed Google Scholar
Li, F. et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal.3, ra13 (2010). PubMedPubMed Central Google Scholar
Atsumi, G. et al. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J. Biol. Chem.273, 13870–13877 (1998). CASPubMed Google Scholar
Revesz, L. Effect of tumour cells killed by X-rays upon the growth of admixed viable cells. Nature178, 1391–1392 (1956). CASPubMed Google Scholar
Chaurio, R. et al. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity46, 317–322 (2013). CASPubMed Google Scholar
Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med.17, 860–866 (2011). CASPubMedPubMed Central Google Scholar
Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature517, 209–213 (2015). CASPubMed Google Scholar
Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol.16, 393–405 (2015). CASPubMed Google Scholar
Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell6, 309–322 (2010). CASPubMedPubMed Central Google Scholar
Marusyk, A., Porter, C. C., Zaberezhnyy, V. & DeGregori, J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol.8, e1000324 (2010). PubMedPubMed Central Google Scholar
Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science302, 1036–1038 (2003). CASPubMed Google Scholar
Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell4, 321–328 (2003). CASPubMed Google Scholar
Garrison, S. P. et al. Selection against PUMA gene expression in _Myc_-driven B-cell lymphomagenesis. Mol. Cell. Biol.28, 5391–5402 (2008). CASPubMedPubMed Central Google Scholar
Michalak, E. M. et al. Puma and to a lesser extent Noxa are suppressors of _Myc_-induced lymphomagenesis. Cell Death Differ.16, 684–696 (2009). CASPubMed Google Scholar
Michalak, E. M. et al. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev.24, 1608–1613 (2010). CASPubMedPubMed Central Google Scholar
Labi, V. et al. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev.24, 1602–1607 (2010). CASPubMedPubMed Central Google Scholar
Qiu, W. et al. PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology54, 1249–1258 (2011). CASPubMed Google Scholar
Pierce, R. H., Vail, M. E., Ralph, L., Campbell, J. S. & Fausto, N. Bcl-2 expression inhibits liver carcinogenesis and delays the development of proliferating foci. Am. J. Pathol.160, 1555–1560 (2002). CASPubMedPubMed Central Google Scholar
Orlik, J. et al. The BH3-only protein BID impairs the p38-mediated stress response and promotes hepatocarcinogenesis during chronic liver injury in mice. Hepatology62, 816–828 (2015). CASPubMed Google Scholar
Bai, L., Ni, H. M., Chen, X., DiFrancesca, D. & Yin, X. M. Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am. J. Pathol.166, 1523–1532 (2005). CASPubMedPubMed Central Google Scholar
Bejar, R. & Steensma, D. P. Recent developments in myelodysplastic syndromes. Blood124, 2793–2803 (2014). CASPubMed Google Scholar
Guirguis, A. A. et al. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia. Cell Death Differ.23, 1049–1059 (2016). CASPubMedPubMed Central Google Scholar
Slape, C. I. et al. Inhibition of apoptosis by BCL2 prevents leukemic transformation of a murine myelodysplastic syndrome. Blood120, 2475–2483 (2012). CASPubMedPubMed Central Google Scholar
Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol.16, 907–917 (2015). CASPubMedPubMed Central Google Scholar
Tang, J. et al. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol. Med. Rep.12, 7907–7914 (2015). CASPubMedPubMed Central Google Scholar
Tardaguila, M. & Manes, S. CX3CL1 at the crossroad of EGF signals: relevance for the progression of ERBB2 breast carcinoma. Oncoimmunology2, e25669 (2013). PubMedPubMed Central Google Scholar
Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature461, 282–286 (2009). CASPubMedPubMed Central Google Scholar
Spychala, J. Tumor-promoting functions of adenosine. Pharmacol. Ther.87, 161–173 (2000). CASPubMed Google Scholar
Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol.223, 177–194 (2011). CASPubMed Google Scholar
Ford, C. A. et al. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr. Biol.25, 577–588 (2015). CASPubMedPubMed Central Google Scholar
Stanford, J. C. et al. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J. Clin. Invest.124, 4737–4752 (2014). CASPubMedPubMed Central Google Scholar
Callihan, E. B. et al. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res. Treat.138, 549–559 (2013). PubMedPubMed Central Google Scholar
Schedin, P. J. & Watson, C. J. The complexity of the relationships between age at first birth and breast cancer incidence curves implicate pregnancy in cancer initiation as well as promotion of existing lesions. J. Mammary Gland Biol. Neoplasia14, 85–86 (2009). PubMed Google Scholar
Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell57, 860–872 (2015). CASPubMedPubMed Central Google Scholar
Lovric, M. M. & Hawkins, C. J. TRAIL treatment provokes mutations in surviving cells. Oncogene29, 5048–5060 (2010). CASPubMedPubMed Central Google Scholar
Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol.2, 156–162 (2000). CASPubMed Google Scholar
Rehm, M., Dussmann, H. & Prehn, J. H. Real-time single cell analysis of Smac/DIABLO release during apoptosis. J. Cell Biol.162, 1031–1043 (2003). CASPubMedPubMed Central Google Scholar
Rehm, M., Huber, H. J., Dussmann, H. & Prehn, J. H. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J.25, 4338–4349 (2006). CASPubMedPubMed Central Google Scholar
Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med.5, 157–163 (1999). CASPubMed Google Scholar
Albeck, J. G. et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol. Cell30, 11–25 (2008). CASPubMedPubMed Central Google Scholar
Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature391, 43–50 (1998). CASPubMed Google Scholar
Galluzzi, L., Larochette, N., Zamzami, N. & Kroemer, G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene25, 4812–4830 (2006). CASPubMed Google Scholar
Tait, S. W. et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell18, 802–813 (2010). CASPubMedPubMed Central Google Scholar
Orth, J. D., Loewer, A., Lahav, G. & Mitchison, T. J. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol. Biol. Cell23, 567–576 (2012). CASPubMedPubMed Central Google Scholar
Colin, D. J., Hain, K. O., Allan, L. A. & Clarke, P. R. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins. Open Biol.5, 140156 (2015). PubMedPubMed Central Google Scholar
Luke, J. J., Van De Wetering, C. I. & Knudson, C. M. Lymphoma development in Bax transgenic mice is inhibited by Bcl-2 and associated with chromosomal instability. Cell Death Differ.10, 740–748 (2003). CASPubMed Google Scholar
Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer15, 334–346 (2015). CASPubMedPubMed Central Google Scholar
Gole, B. & Wiesmuller, L. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front. Cell Dev. Biol.3, 41 (2015). PubMedPubMed Central Google Scholar
Hars, E. S., Lyu, Y. L., Lin, C. P. & Liu, L. F. Role of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemia. Cancer Res.66, 8975–8979 (2006). CASPubMed Google Scholar
Sim, S. P. & Liu, L. F. Nucleolytic cleavage of the mixed lineage leukemia breakpoint cluster region during apoptosis. J. Biol. Chem.276, 31590–31595 (2001). CASPubMed Google Scholar
Betti, C. J., Villalobos, M. J., Diaz, M. O. & Vaughan, A. T. Apoptotic stimuli initiate MLL–AF9 translocations that are transcribed in cells capable of division. Cancer Res.63, 1377–1381 (2003). CASPubMed Google Scholar
Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol.30, 677–706 (2012). CASPubMed Google Scholar
Fresquet, V., Rieger, M., Carolis, C., Garcia-Barchino, M. J. & Martinez-Climent, J. A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood123, 4111–4119 (2014). CASPubMed Google Scholar
Song, J. H., Kandasamy, K., Zemskova, M., Lin, Y. W. & Kraft, A. S. The BH3 mimetic ABT-737 induces cancer cell senescence. Cancer Res.71, 506–515 (2011). CASPubMed Google Scholar
Hardwick, J. M. & Soane, L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol.5, a008722 (2013). PubMedPubMed Central Google Scholar
Hyman, B. T. & Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat. Rev. Neurosci.13, 395–406 (2012). CASPubMed Google Scholar
Kilbride, S. M. & Prehn, J. H. Central roles of apoptotic proteins in mitochondrial function. Oncogene32, 2703–2711 (2013). CASPubMed Google Scholar
Bonneau, B., Prudent, J., Popgeorgiev, N. & Gillet, G. Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim. Biophys. Acta1833, 1755–1765 (2013). CASPubMed Google Scholar
Pedro, J. M. et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2–BECN1 complex and autophagy. Autophagy11, 452–459 (2015). PubMedPubMed Central Google Scholar
Lindqvist, L. M., Heinlein, M., Huang, D. C. & Vaux, D. L. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl Acad. Sci. USA111, 8512–8517 (2014). CASPubMedPubMed Central Google Scholar
Choi, S. et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat. Commun.7, 10384 (2016). CASPubMedPubMed Central Google Scholar
Dimberg, L. Y. et al. On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene32, 1341–1350 (2013). CASPubMed Google Scholar
Von Karstedt, S. et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell27, 561–573 (2015). CASPubMedPubMed Central Google Scholar
Somasekharan, S. P. et al. TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis. Apoptosis18, 324–336 (2013). CASPubMed Google Scholar
Ehrenschwender, M. et al. Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation. Cell Death Differ.17, 1435–1447 (2010). CASPubMed Google Scholar
Ceppi, P. et al. CD95 and CD95L promote and protect cancer stem cells. Nat. Commun.5, 5238 (2014). CASPubMed Google Scholar
Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature359, 554–556 (1992). CASPubMed Google Scholar
Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med.6, 1029–1035 (2000). CASPubMed Google Scholar
Letai, A., Sorcinelli, M. D., Beard, C. & Korsmeyer, S. J. Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell6, 241–249 (2004). CASPubMed Google Scholar
Kelly, G. L. et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev.28, 58–70 (2014). CASPubMedPubMed Central Google Scholar
Garcia, E. L. & Mills, A. A. Getting around lethality with inducible Cre-mediated excision. Semin. Cell Dev. Biol.13, 151–158 (2002). CASPubMed Google Scholar
Zhang, J. et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat. Commun.4, 2157 (2013). PubMed Google Scholar
Earley, S. et al. In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res.72, 2949–2956 (2012). CASPubMedPubMed Central Google Scholar
Ellenbroek, S. I. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer14, 406–418 (2014). CASPubMed Google Scholar
Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS ONE8, e64029 (2013). CASPubMedPubMed Central Google Scholar
Kim, K. W., Moretti, L. & Lu, B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS ONE3, e2275 (2008). PubMedPubMed Central Google Scholar
Werthmoller, N., Frey, B., Wunderlich, R., Fietkau, R. & Gaipl, U. S. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis.6, e1761 (2015). CASPubMedPubMed Central Google Scholar
Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell159, 1563–1577 (2014). CASPubMedPubMed Central Google Scholar
White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell159, 1549–1562 (2014). CASPubMedPubMed Central Google Scholar
Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun.5, 5166 (2014). CASPubMed Google Scholar
Ahn, J., Konno, H. & Barber, G. N. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene34, 5302–5308 (2015). CASPubMedPubMed Central Google Scholar
Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA93, 14559–14563 (1996). CASPubMedPubMed Central Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). CASPubMed Google Scholar
Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med.19, 1264–1272 (2013). CASPubMedPubMed Central Google Scholar
Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell25, 846–859 (2014). CASPubMed Google Scholar
Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov.11, 109–124 (2012). CASPubMed Google Scholar
Tait, S. W. & Green, D. R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol.5, a008706 (2013). PubMedPubMed Central Google Scholar
Hellwig, C. T. et al. Real time analysis of tumor necrosis factor-related apoptosis-inducing ligand/cycloheximide-induced caspase activities during apoptosis initiation. J. Biol. Chem.283, 21676–21685 (2008). CASPubMed Google Scholar
Hellwig, C. T. et al. Activity of protein kinase CK2 uncouples Bid cleavage from caspase-8 activation. J. Cell Sci.123, 1401–1406 (2010). CASPubMed Google Scholar
Desagher, S. et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell8, 601–611 (2001). CASPubMed Google Scholar
Wolan, D. W., Zorn, J. A., Gray, D. C. & Wells, J. A. Small-molecule activators of a proenzyme. Science326, 853–858 (2009). CASPubMedPubMed Central Google Scholar
Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol.4, 641–648 (2004). CASPubMed Google Scholar
Berardo, M. D. et al. bcl-2 and apoptosis in lymph node positive breast carcinoma. Cancer82, 1296–1302 (1998). CASPubMed Google Scholar
Vargas-Roig, L. M. et al. Prognostic value of Bcl-2 in breast cancer patients treated with neoadjuvant anthracycline based chemotherapy. Mol. Oncol.2, 102–111 (2008). PubMedPubMed Central Google Scholar
Neri, A. et al. Bcl-2 expression correlates with lymphovascular invasion and long-term prognosis in breast cancer. Breast Cancer Res. Treat.99, 77–83 (2006). CASPubMed Google Scholar
Meterissian, S. H. et al. Bcl-2 is a useful prognostic marker in Dukes' B colon cancer. Ann. Surg. Oncol.8, 533–537 (2001). CASPubMed Google Scholar
Watson, N. F. et al. Evidence that the p53 negative/Bcl-2 positive phenotype is an independent indicator of good prognosis in colorectal cancer: a tissue microarray study of 460 patients. World J. Surg. Oncol.3, 47 (2005). PubMedPubMed Central Google Scholar
Tomita, M. et al. Prognostic significance of bcl-2 expression in resected pN2 non-small cell lung cancer. Eur. J. Surg. Oncol.29, 654–657 (2003). CASPubMed Google Scholar
Pillai, K., Pourgholami, M. H., Chua, T. C. & Morris, D. L. Does the expression of BCL2 have prognostic significance in malignant peritoneal mesothelioma? Am. J. Cancer Res.3, 312–322 (2013). CASPubMedPubMed Central Google Scholar
Kohler, T. et al. High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia16, 22–29 (2002). CASPubMed Google Scholar
Bairey, O., Zimra, Y., Shaklai, M., Okon, E. & Rabizadeh, E. Bcl-2, Bcl-X, Bax, and Bak expression in short- and long-lived patients with diffuse large B-cell lymphomas. Clin. Cancer Res.5, 2860–2866 (1999). CASPubMed Google Scholar