Molecular mechanisms of glioma invasiveness: the role of proteases (original) (raw)
Avgeropoulos, N. G., Batchelor, T. T. New treatment strategies for malignant gliomas. Oncologist4, 209–224 (1999). CASPubMed Google Scholar
Sheline, G. E. Tumors of the Brain (ed. Blehen, N. M.) 83–99 (Springer–Verlag, Berlin, 1986). Google Scholar
Barker, F. G. et al. Age and radiation response in glioblastoma multiforme. Neourosurgery49, 1288–1298 (2001). Google Scholar
Bignami, A. & Asher, R. Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int. J. Dev. Neurosci.10, 45–57 (1992). CASPubMed Google Scholar
Dano, K. et al. Plasminogen activators, tissue degradation and cancer. Adv. Cancer Res.44, 139–266 (1985). CASPubMed Google Scholar
Naldini, L. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J.11, 4825–4833 (1992). CASPubMedPubMed Central Google Scholar
Nielsen, L. S., Andreasen, P. A., Grondahl-Hansen, J., Skriver, L. & Dano, K. Plasminogen activators catalyse conversion of inhibitor from fibrosarcoma cells to an inactive form with a lower apparent molecular mass. FEBS Lett.196, 269–273 (1986). CASPubMed Google Scholar
Vassalli, J. D., Baccino, D. & Belin, D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J. Cell Biol.100, 86–92 (1985). CASPubMed Google Scholar
Zhou, H. M., Nichols, A., Meda, P. & Vassalli, J. D. Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. EMBO J.19, 4817–4826 (2000). CASPubMedPubMed Central Google Scholar
Ossowski, L. & Aguirre-Ghiso, J. A. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr. Opin. Cell Biol.12, 613–620 (2000). CASPubMed Google Scholar
Sidenius, N., Andolfo, A., Fesce, R. & Blasi, F. Urokinase regulates vitronectin binding by controlling urokinase receptor oligomerization. J. Biol. Chem.277, 27982–27990 (2002). CASPubMed Google Scholar
Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nature Rev. Mol. Cell Biol.3, 932–943 (2002). CAS Google Scholar
Resnati, M. et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc. Natl Acad. Sci. USA99, 1359–1364 (2002). CASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. Expression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo. Cancer Res.54, 3656–3661 (1994). CASPubMed Google Scholar
Gladson, C. L., Pijuan-Thompson, V., Olman, M. A., Gillespie, G. Y. & Yacoub, I. Z. Up-regulation of urokinase and urokinase receptor genes in malignant astrocytoma. Am. J. Pathol.146, 1150–1160 (1995). CASPubMedPubMed Central Google Scholar
Lakka, S. S., Bhattacharya, A., Mohanam, S., Boyd, D. & Rao, J. S. Regulation of the uPA gene in various grades of human glioma cells. Int. J. Oncol.18, 71–79 (2001). CASPubMed Google Scholar
Arai, Y. et al. Production of urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor-1 (PAI-1) in human brain tumours. Acta Neurochir. (Wien)140, 377–385 (1998). CAS Google Scholar
Zhang, X. et al. Expression and localisation of urokinase-type plasminogen activator gene in gliomas. J. Clin. Neurosci.7, 116–119 (2000). CASPubMed Google Scholar
Mohanam, S. et al. Elevated levels of urokinase-type plasminogen activator and its receptor during tumor growth in vivo. Int. J. Oncol.14, 169–174 (1999). CASPubMed Google Scholar
Mohanam, S. et al. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res.53, 4143–4147 (1993). CASPubMed Google Scholar
Yamamoto, M. et al. Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res.54, 5016–5020 (1994). Showed that expression of urokinase-type plasminogen activator (uPA) was significantly higher in anaplastic astrocytomas and glioblastomas, and uPA receptor (uPAR) mRNA was localized in astrocytoma cells and endothelial cells in the tumour tissue, which indicates that the expression of uPAR by invading astrocytoma cells might be important for the invasive behaviour of glioblastomas. CASPubMed Google Scholar
Czekay, R. P. et al. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol. Biol. Cell12, 1467–1479 (2001). CASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. Expression and cellular localization of low-density lipoprotein receptor-related protein/α2-macroglobulin receptor in human glioblastoma in vivo. Brain Tumor Pathol.15, 23–30 (1998). CASPubMed Google Scholar
Mori, T. et al. Up-regulation of urokinase-type plasminogen activator and its receptor correlates with enhanced invasion activity of human glioma cells mediated by transforming growth factor-α or basic fibroblast growth factor. J. Neurooncol.46, 115–123 (2000). CASPubMed Google Scholar
Bhattacharya, A., Lakka, S. S., Mohanam, S., Boyd, D. & Rao, J. S. Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin. Cancer Res.7, 267–276 (2001). CASPubMed Google Scholar
Mohanam, S. et al. Increased invasion of neuroglioma cells transfected with urokinase plasminogen activator receptor cDNA. Int. J. Oncol.13, 1285–1290 (1998). CASPubMed Google Scholar
Engelhard, H., Narang, C., Homer, R. & Duncan, H. Urokinase antisense oligodeoxynucleotides as a novel therapeutic agent for malignant glioma: in vitro and in vivo studies of uptake, effects and toxicity. Biochem. Biophys. Res. Commun.227, 400–405 (1996). CASPubMed Google Scholar
Engelhard, H. H., Homer, R. J., Duncan, H. A. & Rozental, J. Inhibitory effects of phenylbutyrate on the proliferation, morphology, migration and invasiveness of malignant glioma cells. J. Neurooncol.37, 97–108 (1998). CASPubMed Google Scholar
Mishima, K. et al. A peptide derived from the non-receptor-binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin. Proc. Natl Acad. Sci. USA97, 8484–8489 (2000). Showed that a peptide derived from the connecting peptide region of uPA inhibits endothelial-cell migrationin vitroand tumour angiogenesisin vivoand has potential for clinical use. CASPubMedPubMed Central Google Scholar
Mohanam, S. et al. Stable transfection of urokinase-type plasminogen activator antisense construct modulates invasion of human glioblastoma cells. Clin. Cancer Res.7, 2519–2526 (2001). CASPubMed Google Scholar
Mohanam, S. et al. Modulation of invasive properties of human glioblastoma cells stably expressing amino-terminal fragment of urokinase-type plasminogen activator. Oncogene21, 7824–7830 (2002). CASPubMed Google Scholar
Mohanam, S. et al. In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene14, 1351–1359 (1997). Showed that uPAR expression was reduced in glioblastoma cell lines stably transfected with antisense-uPAR. These cells had a low level of invasion and migration compared with controls. However, there was no difference in uPA activity. Matrix metalloproteinase 2 (MMP2) activity was decreased in antisense-expressing clones compared with controls. CASPubMed Google Scholar
Go, Y. et al. Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin. Exp. Metastasis15, 440–446 (1997). CASPubMed Google Scholar
Mohan, P. M. et al. Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res.59, 3369–3373 (1999). CASPubMed Google Scholar
Chintala, S. K. et al. Altered in vitro spreading and cytoskeletal organization in human glioma cells by downregulation of urokinase receptor. Mol. Carcinog.20, 355–365 (1997). CASPubMed Google Scholar
MacDonald, T. J., DeClerck, Y. A. & Laug, W. E. Urokinase induces receptor mediated brain tumor cell migration and invasion. J. Neurooncol.40, 215–226 (1998). CASPubMed Google Scholar
Hedberg, K. K., Stauff, C., Hoyer-Hansen, G., Ronne, E. & Griffith, O. H. High-molecular-weight serum protein complexes differentially promote cell migration and the focal adhesion localization of the urokinase receptor in human glioma cells. Exp. Cell Res.257, 67–81 (2000). CASPubMed Google Scholar
Kin, Y. et al. A novel role for the urokinase-type plasminogen activator receptor in apoptosis of malignant gliomas. Int. J. Oncol.17, 61–65 (2000). CASPubMed Google Scholar
Yanamandra, N. et al. Downregulation of urokinase-type plasminogen activator receptor (uPAR) induces caspase-mediated cell death in human glioblastoma cells. Clin. Exp. Metastasis18, 611–615 (2000). CASPubMed Google Scholar
Krishnamoorthy, B. et al. Glioma cells deficient in urokinase plaminogen activator receptor expression are susceptible to tumor necrosis factor-α-related apoptosis-inducing ligand-induced apoptosis. Clin. Cancer Res.7, 4195–4201 (2001). CASPubMed Google Scholar
Fahraeus, R. & Lane, D. P. The p16(INK4a) tumour suppressor protein inhibits αvβ3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of αvβ3 to focal contacts. EMBO J.18, 2106–2118 (1999). CASPubMedPubMed Central Google Scholar
Adachi, Y. et al. Down-regulation of integrin αvβ3 expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J. Biol. Chem.276, 47171–47177 (2001). The authors infected the malignant glioma cell line SNB19 with the adenovirus vectors Ad-uPAR, Ad-INK4A or Ad-uPAR–INK4A in the presence of vitronectin, and showed that this resulted in decreased expression of αvβ3 integrin and decreased integrin-mediated biological effects, including adhesion, migration, proliferation and survival. CASPubMed Google Scholar
Adachi, Y. et al. Suppression of glioma invasion and growth by adenovirus-mediated delivery of a bicistronic construct containing antisense uPAR and sense p16 gene sequences. Oncogene21, 87–95 (2002). CASPubMed Google Scholar
Vallera, D. A., Li, C., Jin, N., Panoskaltsis-Mortari, A. & Hall, W. A. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J. Natl Cancer Inst.94, 597–606 (2002). This paper showed that DTAT was highly potent and selective in killing uPAR-expressing glioblastoma cells and human umbilical-vein endothelial cellsin vitroand caused a statistically significant regression of small U118MG tumours in all micein vivowith no systemic effects. CASPubMed Google Scholar
Alonso, D. F., Tejera, A. M., Farias, E. F., Bal de Kier, J. E. & Gomez, D. E. Inhibition of mammary tumor cell adhesion, migration, and invasion by the selective synthetic urokinase inhibitor B428. Anticancer Res.18, 4499–4504 (1998). CASPubMed Google Scholar
Sturzebecher, J. et al. 3-Amidinophenylalanine-based inhibitors of urokinase. Bioorg. Med. Chem. Lett.9, 3147–3152 (1999). CASPubMed Google Scholar
Evans, D. M., Sloan-Stakleff, K., Arvan, M. & Guyton, D. P. Time and dose dependency of the suppression of pulmonary metastases of rat mammary cancer by amiloride. Clin. Exp. Metastasis16, 353–357 (1998). CASPubMed Google Scholar
Behrendt, N., Ronne, E. & Dano, K. Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin. J. Biol. Chem.268, 5985–5989 (1993). CASPubMed Google Scholar
Sato, S. et al. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. FEBS Lett.528, 212–216 (2002). CASPubMed Google Scholar
Shingleton, W. D., Hodges, D. J., Brick, P. & Cawston, T. E. Collagenase: a key enzyme in collagen turnover. Biochem. Cell Biol.74, 759–775 (1996). CASPubMed Google Scholar
Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol.22, 51–86 (2002). CASPubMed Google Scholar
Gomez, D. E., Alonso, D. F., Yoshiji, H. & Thorgeirsson, U. P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell. Biol.74, 111–122 (1997). CASPubMed Google Scholar
Westermarck, J. & Kahari, V. -M. Regulation of matrix metalloproteinase expression in tumour invasion. FASEB J.13, 781–792 (1999). CASPubMed Google Scholar
Westermarck, J., Seth, A. & Kahari, V. M. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene14, 2651–2660 (1997). CASPubMed Google Scholar
Yabkowitz, R. et al. Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood93, 1969–1979 (1999). CASPubMed Google Scholar
Chintala, S. K. et al. Induction of matrix metalloproteinases-9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J. Biol. Chem.273, 13545–13551 (1998). This paper showed that cytochalasin-D treatment of SNB19 cells resulted in the loss of PMA-induced MMP9 expression and actin polymerization, resulting in cell rounding. MMP9 expression was also inhibited by calphostin-C, a protein-kinase inhibitor, which indicates the involvement of protein kinase C in MMP9 expression. CASPubMed Google Scholar
Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L & Matrisian, L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl Acad. Sci. USA94, 1402–1407 (1997). CASPubMedPubMed Central Google Scholar
Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell Biol.140, 1535–1541 (1998). CASPubMedPubMed Central Google Scholar
Itoh, T. et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Metastasis17, 177–181 (1999). CASPubMed Google Scholar
Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res.58, 1048–1051 (1998). CASPubMed Google Scholar
Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol.17, 463–516 (2001). CASPubMedPubMed Central Google Scholar
Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell103, 481–490 (2000). The authors showed that MMP9 expressed by inflammatory cells is functionally involved in the regulation of oncogene-induced keratinocyte hyperproliferation, progression to invasive cancer and end-stage malignant grade in K14–HPV16 transgenic mice. CASPubMedPubMed Central Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000). CASPubMed Google Scholar
Chandrasekar, N. et al. Modulation of endothelial cell morphogenesis in vitro by MMP-9 during glial–endothelial cell interactions. Clin. Exp. Metastasis18, 337–342 (2000). CASPubMed Google Scholar
Tanaka, K., Abe, M. & Sato, Y. Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J. Cancer Res.90, 647–654 (1999). CASPubMedPubMed Central Google Scholar
McCawley, L. J. & Matrisian, L. M. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin. Cell Biol.13, 534–540 (2001). CASPubMed Google Scholar
Platten, M., Wick, W. & Weller, M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis and immune escape. Microsc. Res. Tech.52, 401–410 (2001). CASPubMed Google Scholar
Rao, J. S. et al. Elevated levels of Mr 92,000 type IV collagenase in human brain tumors. Cancer Res.53, 2208–2211 (1993). CASPubMed Google Scholar
Forsyth, P. A. et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer79, 1828–1835 (1999). CASPubMedPubMed Central Google Scholar
Rooprai, H. K. & McCormick, D. Proteases and their inhibitors in human brain tumours: a review. Anticancer Res.17, 4151–4162 (1997). CASPubMed Google Scholar
Vos, C. M. et al. Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: implications for neuroinflammation and neurodegeneration. J. Neuroimmunol.109, 221–227 (2000). CASPubMed Google Scholar
Sawaya, R. E. et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin. Exp. Metastasis14, 35–42 (1996). CASPubMed Google Scholar
Sawaya, R. et al. Elevated levels of Mr 92,000 type IV collagenase during tumor growth in vivo. Biochem. Biophys. Res. Commun.251, 632–636 (1998). CASPubMed Google Scholar
Lakka, S. S. et al. Regulation of MMP-9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal-regulated kinase and jun amino-terminal kinase signaling cascades. Clin. Exp. Metastasis18, 245–252 (2000). CASPubMed Google Scholar
Choe, G. et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res.8, 2894–2901 (2002). CASPubMed Google Scholar
Ellerbrook, S. M. et al. Phosphatidyl inositol 3-kinase activity in epidermal growth factor stimulated matrix metallproteinases-9 production and cell surface association. Cancer Res.61, 1855–1861 (2001). Google Scholar
Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res.62, 6318–6322 (2002). CASPubMed Google Scholar
Chintala, S. K. et al. Altered actin cytoskeleton and inhibition of matrix metalloproteinase expression by vanadate and phenylarsine oxide, inhibitors of phosphotyrosine phosphatases: modulation of migration and invasion of human malignant glioma cells. Mol. Carcinog.26, 274–285 (1999). CASPubMed Google Scholar
Kondraganti, S. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res.60, 6851–6855 (2000). Showed that SNB19 stable transfectants for antisense-MMP9 expressed decreased levels of MMP9 protein and mRNA. Invasionin vitroand intracranial tumour growthin vivowere also inhibited in these stable antisense-expressing cells, indicating the role of MMP9 in tumour growth and invasion. CASPubMed Google Scholar
Lakka, S. S. et al. Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene21, 8011–8019 (2002). CASPubMed Google Scholar
Brand, K. et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res.60, 5723–5730 (2000). CASPubMed Google Scholar
Celiker, M. Y. et al. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene20, 4337–4343 (2001). CASPubMed Google Scholar
Rao, J. S. et al. Role of plasminogen activator and of 92-kDa type IV collagenase in glioblastoma invasion using an in vitro matrigel model. J. Neurooncol.18, 129–138 (1994). CASPubMed Google Scholar
Matsuzawa, K., Fukuyama, K., Hubbard, S. L., Dirks, P. B. & Rutka, J. T. Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential. J. Neuropathol. Exp. Neurol.55, 88–96 (1996). CASPubMed Google Scholar
Valente, P. et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int. J. Cancer75, 246–253 (1998). CASPubMed Google Scholar
Wang, Z., Juttermann, R. & Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem.275, 26411–26415 (2000). CASPubMed Google Scholar
Yoshiji, H. et al. Vascular endothelial growth factor tightly regulates in vivo development of murine hepatocellular carcinoma cells. Hepatology28, 1489–1496 (1998). CASPubMed Google Scholar
Price, A. et al. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin. Cancer Res.5, 845–854 (1999). CASPubMed Google Scholar
Tonn, J. C. et al. Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int. J. Cancer80, 764–772 (1999). CASPubMed Google Scholar
Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295, 2387–2392 (2002). CASPubMed Google Scholar
Johansson, N. et al. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci.113, 227–235 (2000). CASPubMed Google Scholar
Shin, M., Yan, C. & Boyd, D. An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta1589, 311–316 (2002). CASPubMed Google Scholar
Lakka, S. S. et al. Downregulation of MMP-9 in ERK-mutated stable transfectants inhibits glioma invasion in vitro. Oncogene21, 5601–5608 (2002). Shows that the ERK-dependent signalling pathway seems to regulate MMP-9 mediated glioma invasion. CASPubMed Google Scholar
Sun, Y. et al. Wild-type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem.275, 11327–11332 (2000). CASPubMed Google Scholar
Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res.62, 6318–6322 (2002). Showed that hyaluronic acid induces the invasion of glioma cells by the induction of MMP9 through the FAK–ERK1/ERK2 signalling pathway. Introduction of a functionalPTENgene decreases these effects, and the protein-phosphatase activity of PTEN is crucial for these events. CASPubMed Google Scholar
Koul, D. et al. Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene20, 6669–6678 (2001). CASPubMed Google Scholar
Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J.18, 4645–4656 (1999). The authors show that both plasminogen deficiency and MMP inhibition are required for complete inhibition of the healing process. This indicates that there is a functional overlap between the two classes of matrix-degrading proteases. The strong similarities between the proteolytic mechanisms in wound healing and cancer invasion indicate that cancer therapy will require the use of inhibitors of both classes of protease. CASPubMedPubMed Central Google Scholar
Rooprai, H. K. et al. The role of integrin receptors in aspects of glioma invasion in vitro. Int. J. Dev. Neurosci.17, 613–623 (1999). CASPubMed Google Scholar
Chintala, S. K., Sawaya, R., Gokaslan, Z. L. & Rao, J. S. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by α3β1 integrin. Cancer Lett.103, 201–208 (1996). CASPubMed Google Scholar
Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA98, 119–124 (2001). CASPubMed Google Scholar
Rooprai, H. K. et al. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol. Appl. Neurobiol.27, 29–39 (2001). CASPubMed Google Scholar
Kirschke, H., Barrett, A. J. & Rawlings, N. D. Proteinases 1: lysosomal cysteine proteinases. Protein Profile2, 1581–1643 (1995). CASPubMed Google Scholar
Sloane, B. F. et al. in Biological Functions of Proteases and Inhibitors (eds Katunama, N., Suzuki, J., Travis, J. & Fritz, H.) 131–147 (Scientific Societies Press, Tokyo, Japan, 1994). Google Scholar
Qian, F., Frankfater, A., Chan, S. J. & Steiner, D. F. The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol.10, 159–168 (1991). CASPubMed Google Scholar
Yan, S., Berquin, I. M., Troen, B. R. & Sloane, B. F. Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol.19, 79–91 (2000). CASPubMed Google Scholar
Konduri, S. et al. Elevated levels of cathepsin B in human glioblastoma cell lines. Int. J. Oncol.19, 519–524 (2001). CASPubMed Google Scholar
Spiess, E. et al. Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity and inhibitor status at the cellular level. J. Histochem. Cytochem.42, 917–929 (1994). CASPubMed Google Scholar
Kobayashi, H. et al. Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res.52, 3610–3614 (1992). CASPubMed Google Scholar
Koblinski, J. E. et al. Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J. Biol. Chem.277, 32220–32227 (2002). CASPubMed Google Scholar
Somanna, A., Mundodi, V. & Gedamu, L. Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor-β. J. Biol. Chem.277, 25305–25312 (2002). The authors used the cathepsin-B-specific inhibitor CA074 and antisense mRNA to show thatLeishmaniacathepsin B has a role in survival and pathogenesis by activating latent TGF-β, thereby allowing the parasite to replicate in macrophages. CASPubMed Google Scholar
Eeckhout, Y. & Vaes, G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J.166, 21–31 (1977). CASPubMedPubMed Central Google Scholar
Emmert-Buck, M. R. et al. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol.145, 1285–1290 (1994). CASPubMedPubMed Central Google Scholar
Kostoulas, G., Lang, A., Nagase, H. & Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett.455, 286–290 (1999). CASPubMed Google Scholar
Kostoulas, G., Lang, A., Nagase, H. & Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett.455, 286–290 (1999). CASPubMed Google Scholar
McCormick, D. Secretion of cathepsin B by human gliomas in vitro. Neuropathol. Appl. Neurobiol.19, 146–151 (1993). CASPubMed Google Scholar
Rempel, S. A. et al. Cathepsin B expression and localization in glioma progression and invasion. Cancer Res.54, 6027–6031 (1994). CASPubMed Google Scholar
Sivaparvathi, M. et al. Overexpression and localization of cathepsin B during the progression of human gliomas. Clin. Exp. Metastasis13, 49–56 (1995). CASPubMed Google Scholar
Mikkelsen, T. et al. Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J. Neurosurg.83, 285–290 (1995). CASPubMed Google Scholar
Strojnik, T., Kos, J., Zidanik, B., Golouh, R. & Lah, T. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin. Cancer Res.5, 559–567 (1999). The authors showed that high expression levels of cathepsin B correlate with poor clinical outcome. The expression of cathepsin B by endothelial cells might be used to predict the survival of glioblastoma patients and, in addition, it indicates the involvement of cathepsin B in tumour-associated angiogenesis. CASPubMed Google Scholar
Demchik, L. L., Sameni, M., Nelson, K., Mikkelsen, T. & Sloane, B. F. Cathepsin B and glioma invasion. Int. J. Dev. Neurosci.17, 483–494 (1999). CASPubMed Google Scholar
Mohanam, S. et al. Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene20, 3665–3673 (2001). The authors showed that SNB19-stable clones expressing antisense cathepsin B cDNA had significant reductions in the levels of cathepsin B mRNA, enzyme activity and protein compared with controls. These cells had reduced invasivenessin vitro, and intracerebral injection of these antisense clones resulted in reduced tumour formation in nude mice. CASPubMed Google Scholar
Turk, B., Turk, V. & Turk, D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem.378, 141–150 (1997). CASPubMed Google Scholar
Sivaparvathi, M., McCutcheon, I., Sawaya, R., Nicolson, G. L. & Rao, J. S. Expression of cysteine protease inhibitors in human gliomas and meningiomas. Clin. Exp. Metastasis14, 344–350 (1996). CASPubMed Google Scholar
Strojnik, T. et al. Cathepsin B and its inhibitor stefin A in brain tumors. Pflugers Arch.439, R122–R123 (2000). CASPubMed Google Scholar
Konduri, S. D. et al. Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene21, 8705–8712 (2002). CASPubMed Google Scholar
Tysnes, B. B. & Mahesparan, R. Biological mechanisms of glioma invasion and potential therapeutic targets. J. Neurooncol.53, 129–147 (2001). CASPubMed Google Scholar
Ossowski, L. & Aguirre-Ghiso, J. A. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr. Opin. Cell Biol.12, 613–620 (2000). CASPubMed Google Scholar
Goldbrunner, R. H., Bernstein, J. J. & Tonn, J. C. ECM-mediated glioma cell invasion. Microsc. Res. Tech.43, 250–257 (1998). CASPubMed Google Scholar
Rutka, J. T., Apodaca, G., Stern, R. & Rosenblum, M. The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg.69, 155–170 (1988). CASPubMed Google Scholar
Fryer, H. J., Kelly, G. M., Molinaro, L. & Hockfield, S. The high molecular weight Cat-301 chondroitin sulfate proteoglycan from brain is related to the large aggregating proteoglycan from cartilage, aggrecan. J. Biol. Chem.267, 9874–9883 (1992). CASPubMed Google Scholar
Aquino, D. A., Margolis, R. U. & Jargolis, R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain. J. Cell Biol.99, 1130–1139 (1984). CASPubMed Google Scholar
Margolis, R. K. & Margolis, R. U. in Complex Carbohydrates of Nervous Tissue (eds Margolis, R. K. & Margolis, R. U.) 45–73 (Plenum Press, New York, 1979). Google Scholar
Buckley, K. M. et al. A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane. Proc. Natl Acad. Sci. USA80, 7342–7346 (1983). CASPubMedPubMed Central Google Scholar
Bunge, R. P. & Bunge, M. B. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci.6, 499–505 (1983). Google Scholar
Rollins, B. J., Cathcart, M. K. & Culp, L. A. in The Glycoconjugate (ed. Harowitz, M. I.) 289–329 (Academic Press, New York, 1982). Google Scholar
Iozzo, B. P. Proteoglycans and neoplastic–mesenchymal cell interactions. Hum. Pathol.15, 2–10 (1984). CASPubMed Google Scholar
Toole, B. P., Goldberg, R. L., Chi-Rosso, G., Underhill, C. B. & Orkin, R. W. in The Role of Extracellular Matrix in Development (ed. Trelstad, R. L.) 43–66 (Liss, New York, 1984). Google Scholar
Burger, P. C., Heinz, E. R., Shibata, T. & Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg.68, 698–704 (1988). CASPubMed Google Scholar
Chintala, S. K., Sawaya, R., Gokaslan, Z. L., Fuller, G. & Rao, J. S. Immmunohistochemical localization of extracellular matrix proteins in human glioma, both in vivo and in vitro. Cancer Lett.101, 107–114 (1996). CASPubMed Google Scholar
Ruosssslahti, E. & Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science238, 491–497 (1987). Google Scholar
Gladson, C. L. & Cheresh, D. A. Glioblastoma expression of vitronectin and the αvβ3 integrin. Adhesion mechanism for transformed glial cells. J. Clin. Invest.88, 1924–1932 (1991). CASPubMedPubMed Central Google Scholar
Berens, M. E., Rief, M. D., Loo, M. A. & Giese, A. The role of extracellular matrix in human astrocytoma migration and proliferation studies in a microliter scale assay. Clin. Exp. Metastasis12, 405–415 (1994). CASPubMed Google Scholar
Tucker, R. P. The in situ localization of tenascin splice variants and thrombospondin 2 mRNA in the avian embryo. Development117, 347–358 (1993). CASPubMed Google Scholar
Wehrle-Haller, B., Koch, M., Baumgartner, S., Spring, J. & Chiquet, M. Nerve-dependent and -indepdent tenascin expression in the developing chick limb bud. Development112, 627–637 (1991). CASPubMed Google Scholar
Prieto, A. L., Edelman, G. M. & Crossin, K. L. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc. Natl Acad. Sci. USA90, 10154–10158 (1993). Shows that the third fibronectin type III repeat, which contains the RGD tripeptide, supports cell attachment and migration of gliomas, and interaction with many integrins mediates the binding of different cell types to chicken cytotactin. The use of RGD-containing peptides and well-characterized antibodies specific for integrins indicates that cell attachment to the third fibronectin type III repeat is mediated by at least two integrin receptors of the αv subtype. CASPubMedPubMed Central Google Scholar
Yurchenco, P. D. & Schittny, J. C. Molecular architecture of basement membranes. FASEB J.4, 1577–1590 (1990). CASPubMed Google Scholar