Genomic instability — the engine of tumorigenesis? (original) (raw)
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). CASPubMed Google Scholar
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet.3, 415–428 (2002). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Markowitz, S. DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers. J. Clin. Oncol.18, 75S–80S (2000). CASPubMed Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). CASPubMed Google Scholar
Prolla, T. A. et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nature Genet.18, 276–279 (1998). CASPubMed Google Scholar
Baker, S. M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature Genet.13, 336–342 (1996). CASPubMed Google Scholar
Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet.17, 423–430 (1997). CASPubMed Google Scholar
Edelmann, W. et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell91, 467–477 (1997). CASPubMed Google Scholar
de Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature377, 169–173 (1995). CASPubMed Google Scholar
Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res.34, 2311–2321 (1974). CASPubMed Google Scholar
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–28 (1976). CASPubMed Google Scholar
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991). CASPubMed Google Scholar
Loeb, K. R. & Loeb, L. A. Significance of multiple mutations in cancer. Carcinogenesis21, 379–385 (2000). CASPubMed Google Scholar
Loeb, L. A., Loeb, K. R. & Anderson, J. P. Multiple mutations and cancer. Proc. Natl Acad. Sci. USA100, 776–781 (2003). CASPubMedPubMed Central Google Scholar
Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Med.5, 11–12 (1999). CASPubMed Google Scholar
Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol.9, M57–M60 (1999). CASPubMed Google Scholar
Breivik, J. & Gaudernack, G. Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin. Cancer Biol.9, 245–254 (1999). CASPubMed Google Scholar
Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA99, 16226–16231 (2002). CASPubMedPubMed Central Google Scholar
Boveri, T. The Origin of Malignant Tumors (Williams and Wilkins, Baltimore, Maryland, 1929). Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). CASPubMed Google Scholar
Lijovic, M. & Frauman, A. G. Toward an understanding of the molecular genetics of prostate cancer progression. J. Environ. Pathol. Toxicol. Oncol.22, 1–15 (2003). CASPubMed Google Scholar
Morales, C. P., Souza, R. F. & Spechler, S. J. Hallmarks of cancer progression in Barrett's oesophagus. Lancet360, 1587–1589 (2002). PubMed Google Scholar
Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA96, 15121–15126 (1999). CASPubMedPubMed Central Google Scholar
de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell82, 321–330 (1995). CASPubMed Google Scholar
Lynch, H. T. & de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med.348, 919–932 (2003). CASPubMed Google Scholar
Sieber, O. M. et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med.348, 791–799 (2003). PubMed Google Scholar
Halford, S. E. et al. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am. J. Pathol.162, 1545–1548 (2003). CASPubMedPubMed Central Google Scholar
Tomlinson, I. P., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc. Natl Acad. Sci. USA93, 14800–14803 (1996). CASPubMedPubMed Central Google Scholar
Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature392, 300–303 (1998). CASPubMed Google Scholar
Bardelli, A. et al. Carcinogen-specific induction of genetic instability. Proc. Natl Acad. Sci. USA98, 5770–5775 (2001). CASPubMedPubMed Central Google Scholar
Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: A mutational 'hotspot' and interdependence of the 'two hits'. Proc. Natl Acad. Sci. USA97, 3352–3357 (2000). CASPubMedPubMed Central Google Scholar
Sieber, O. M. et al. Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc. Natl Acad. Sci. USA99, 16910–16915 (2002). CASPubMedPubMed Central Google Scholar
Haigis, K. M., Caya, J. G., Reichelderfer, M. & Dove, W. F. Intestinal adenomas can develop with a stable karyotype and stable microsatellites. Proc. Natl Acad. Sci. USA99, 8927–8931 (2002). CASPubMedPubMed Central Google Scholar
Eshleman, J. R. et al. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene10, 33–37 (1995). CASPubMed Google Scholar
Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA91, 6319–6323 (1994). CASPubMedPubMed Central Google Scholar
Tomlinson, I., Sasieni, P. & Bodmer, W. How many mutations in a cancer? Am. J. Pathol.160, 755–758 (2002). PubMedPubMed Central Google Scholar
Abdel–Rahman, W. M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA98, 2538–2543 (2001). PubMedPubMed Central Google Scholar
Wang, T. L. et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc. Natl Acad. Sci. USA99, 3076–3080 (2002). CASPubMedPubMed Central Google Scholar
Muleris, M., Dutrillaux, A. M., Olschwang, S., Salmon, R. J. & Dutrillaux, B. Predominance of normal karyotype in colorectal tumors from hereditary non-polyposis colorectal cancer patients. Genes Chromosom. Cancer14, 223–226 (1995). CASPubMed Google Scholar
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature408, 307–310 (2000). CASPubMed Google Scholar
Rubin, H. The role of selection in progressive neoplastic transformation. Adv. Cancer Res.83, 159–207 (2001). CASPubMed Google Scholar
Muleris, M. et al. Cytogenetic and molecular approaches of polyploidization in colorectal adenocarcinomas. Cancer Genet. Cytogenet.44, 107–118 (1990). CASPubMed Google Scholar
Remvikos, Y., Gerbault–Seureau, M., Magdelenat, H., Prieur, M. & Dutrillaux, B. Proliferative activity of breast cancers increases in the course of genetic evolution as defined by cytogenetic analysis. Breast Cancer Res. Treat.23, 43–49 (1992). CASPubMed Google Scholar
Sieber, O. M., Tomlinson, I. P. & Lamlum, H. The adenomatous polyposis coli (APC) tumour suppressor: genetics, function and disease. Mol. Med. Today6, 462–469 (2000). CASPubMed Google Scholar
Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol.3, 429–432 (2001). CASPubMed Google Scholar
Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol.3, 433–438 (2001). CASPubMed Google Scholar
Beck, N. E. et al. Frequency of germline hereditary non-polyposis colorectal cancer gene mutations in patients with multiple or early onset colorectal adenomas. Gut41, 235–238 (1997). CASPubMedPubMed Central Google Scholar
Lindgren, G., Liljegren, A., Jaramillo, E., Rubio, C. & Lindblom, A. Adenoma prevalence and cancer risk in familial non-polyposis colorectal cancer. Gut50, 228–234 (2002). CASPubMedPubMed Central Google Scholar
Al–Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→A mutations in colorectal tumors. Nature Genet.30, 227–232 (2002). PubMed Google Scholar
Jones, S. et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum. Mol. Genet.11, 2961–2967 (2002). CASPubMed Google Scholar
Bardi, G. et al. Cytogenetic aberrations in colorectal adenocarcinomas and their correlation with clinicopathologic features. Cancer71, 306–314 (1993). CASPubMed Google Scholar
Bardi, G. et al. Cytogenetic analysis of 52 colorectal carcinomas: non-random aberration pattern and correlation with pathologic parameters. Int. J. Cancer55, 422–428 (1993). CASPubMed Google Scholar
Bardi, G. et al. Karyotypic characterization of colorectal adenocarcinomas. Genes Chromosom. Cancer12, 97–109 (1995). CASPubMed Google Scholar
Bardi, G. et al. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis. Cancer Res.53, 1895–1898 (1993). CASPubMed Google Scholar
Bomme, L. et al. Clonal karyotypic abnormalities in colorectal adenomas: clues to the early genetic events in the adenoma–carcinoma sequence. Genes Chromosom. Cancer10, 190–196 (1994). CASPubMed Google Scholar
Bardi, G. et al. Cytogenetic comparisons of synchronous carcinomas and polyps in patients with colorectal cancer. Br. J. Cancer76, 765–769 (1997). CASPubMedPubMed Central Google Scholar
Bomme, L. et al. Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet. Cytogenet.106, 66–71 (1998). CASPubMed Google Scholar
van den Ingh, H. F., Griffioen, G. & Cornelisse, C. J. Flow cytometric detection of aneuploidy in colorectal adenomas. Cancer Res.45, 3392–3397 (1985). CASPubMed Google Scholar
Weiss, H., Wildner, G. P., Jacobasch, K. H., Heinz, U. & Schaelicke, W. Characterization of human adenomatous polyps of the colorectal bowel by means of DNA distribution patterns. Oncology42, 33–41 (1985). CASPubMed Google Scholar
Sciallero, S. et al. Flow cytometric DNA ploidy in colorectal adenomas and family history of colorectal cancer. Cancer61, 114–120 (1988). CASPubMed Google Scholar
Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosom. Cancer15, 234–245 (1996). CASPubMed Google Scholar
Woodford–Richens, K. et al. Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res.60, 2477–2482 (2000). PubMed Google Scholar
Tomlinson, I. P., Lambros, M. B. & Roylance, R. R. Loss of heterozygosity analysis: practically and conceptually flawed? Genes Chromosom. Cancer34, 349–353 (2002). PubMed Google Scholar
Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res.61, 818–822 (2001). CASPubMed Google Scholar
Perucho, M. Cancer of the microsatellite mutator phenotype. Biol. Chem.377, 675–684 (1996). CASPubMed Google Scholar
Samowitz, W. S. & Slattery, M. L. Transforming growth factor-β receptor type 2 mutations and microsatellite instability in sporadic colorectal adenomas and carcinomas. Am. J. Pathol.151, 33–35 (1997). CASPubMedPubMed Central Google Scholar
Sedivy, R. et al. Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence. Br. J. Cancer82, 1276–1282 (2000). CASPubMedPubMed Central Google Scholar
Yashiro, M. et al. Genetic pathways in the evolution of morphologically distinct colorectal neoplasms. Cancer Res.61, 2676–2683 (2001). CASPubMed Google Scholar
Boland, C. R. et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58, 5248–5257 (1998). CASPubMed Google Scholar
Homfray, T. F. et al. Defects in mismatch repair occur after APC mutations in the pathogenesis of sporadic colorectal tumours. Hum. Mutat.11, 114–120 (1998). CASPubMed Google Scholar
Hawkins, N. J., Tomlinson, I., Meagher, A. & Ward, R. L. Microsatellite-stable diploid carcinoma: a biologically distinct and aggressive subset of sporadic colorectal cancer. Br. J. Cancer84, 232–236 (2001). CASPubMedPubMed Central Google Scholar
Humar, B. et al. Novel germline CDH1 mutations in hereditary diffuse gastric cancer families. Hum. Mutat.19, 518–525 (2002). CASPubMed Google Scholar
Yabuta, T. et al. E-cadherin gene variants in gastric cancer families whose probands are diagnosed with diffuse gastric cancer. Int. J. Cancer101, 434–441 (2002). CASPubMed Google Scholar
Suriano, G. et al. Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum. Mol. Genet.12, 575–582 (2003). CASPubMed Google Scholar
Shtil, A. A. Emergence of multidrug resistance in leukemia cells during chemotherapy: mechanisms and prevention. J. Hematother. Stem Cell Res.11, 231–241 (2002). CASPubMed Google Scholar
Dalton, W. S. Drug resistance and drug development in multiple myeloma. Semin. Oncol.29, 21–25 (2002). CASPubMed Google Scholar
Naito, S., Yokomizo, A. & Koga, H. Mechanisms of drug resistance in chemotherapy for urogenital carcinoma. Int. J. Urol.6, 427–439 (1999). CASPubMed Google Scholar
Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med.5, 1071–1075 (1999). CASPubMed Google Scholar
Crabtree, M. et al. Refining the relationship between 'first hits' and 'second hits' at the APC locus: the 'loose fit' model and evidence for differences in somatic mutation spectra among patients. Oncogene22, 4257–4265 (2003). CASPubMed Google Scholar
Albuquerque, C. et al. The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum. Mol. Genet.11, 1549–1560 (2002). CASPubMed Google Scholar
Toyota, M., Ohe–Toyota, M., Ahuja, N. & Issa, J. P. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc. Natl Acad. Sci. USA97, 710–715 (2000). CASPubMedPubMed Central Google Scholar
Menigatti, M. et al. Methylation pattern of different regions of the MLH1 promoter and silencing of gene expression in hereditary and sporadic colorectal cancer. Genes Chromosom. Cancer31, 357–361 (2001). CASPubMed Google Scholar
Simpson, D. J., Bicknell, J. E., McNicol, A. M., Clayton, R. N. & Farrell, W. E. Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosom. Cancer24, 328–336 (1999). CASPubMed Google Scholar
Wheeler, J. M., Loukola, A., Aaltonen, L. A., Mortensen, N. J. & Bodmer, W. F. The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. J. Med. Genet.37, 588–592 (2000). CASPubMedPubMed Central Google Scholar
Spirio, L. N. et al. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nature Genet.20, 385–388 (1998). CASPubMed Google Scholar
Birch, J. M. et al. Cancer phenotype correlates with constitutional TP53 genotype in families with the Li–Fraumeni syndrome. Oncogene17, 1061–1068 (1998). CASPubMed Google Scholar