- Norbury, C. & Nurse, P. Controls of cell proliferation in yeast and animals. Ciba Found. Symp. 150, 168–177 (1990).
CAS PubMed Google Scholar
- Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).
CAS PubMed Google Scholar
- Edwards, P. A. The impact of developmental biology on cancer research: an overview. Cancer Metastasis Rev. 18, 175–180 (1999).
CAS PubMed Google Scholar
- Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).
CAS PubMed Google Scholar
- Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).
CAS PubMed Google Scholar
- Peifer, M. & Wieschaus, E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63, 1167–1176 (1990).
CAS PubMed Google Scholar
- Gumbiner, B. M. Signal transduction of β-catenin. Curr. Opin. Cell Biol. 7, 634–640 (1995).
CAS PubMed Google Scholar
- Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).
CAS PubMed PubMed Central Google Scholar
- Montell, D. J. Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech. Dev. 105, 19–25 (2001).
CAS PubMed Google Scholar
- Rorth, P. Initiating and guiding migration: lessons from border cells. Trends Cell Biol. 12, 325–331 (2002).
CAS PubMed Google Scholar
- Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).
CAS Google Scholar
- Jemal, A. et al. Cancer statistics, 2004. CA Cancer J. Clin. 54, 8–29 (2004).
PubMed Google Scholar
- Pfisterer, J., Hilpert, F., Du Bois, A., Meier, W. & Wagner, U. State-of-the-art first-line treatment of ovarian cancer. Onkologie 26, 446–450 (2003).
CAS PubMed Google Scholar
- Eltabbakh, G. H. Recent advances in the management of women with ovarian cancer. Minerva Ginecol. 56, 81–89 (2004).
CAS PubMed Google Scholar
- Sonoda, Y. Management of early ovarian cancer. Oncology 18, 343–56 (2004).
PubMed Google Scholar
- Feeley, K. M. & Wells, M. Precursor lesions of ovarian epithelial malignancy. Histopathology 38, 87–95 (2001).
CAS PubMed Google Scholar
- Dubeau, L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol. Oncol. 72, 437–442 (1999).
CAS PubMed Google Scholar
- Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1, 53–62 (2002).
CAS PubMed PubMed Central Google Scholar
- Connolly, D. C. et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 63, 1389–1397 (2003).
CAS PubMed Google Scholar
- Flesken-Nikitin, A., Choi, K. C., Eng, J. P., Shmidt, E. N. & Nikitin, A. Y. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 63, 3459–3463 (2003).
CAS PubMed Google Scholar
- Dinulescu, D. M. et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nature Med. 11, 63–70 (2005).
CAS PubMed Google Scholar
- Shih I, M. & Kurman, R. J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 164, 1511–1518 (2004). References 16,17 and 22 present contrasting views of the origin and histogenesis of epithelial ovarian tumours.
PubMed PubMed Central Google Scholar
- Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).
CAS Google Scholar
- Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004). References 23 and 24 provide comprehensive overviews of haematogenous and lymphatic dissemination of cancer cells.
CAS Google Scholar
- Tsuruchi, N. et al. Relationship between paraaortic lymph node involvement and intraperitoneal spread in patients with ovarian cancer: a multivariate analysis. Gynecol. Oncol. 49, 51–55 (1993).
CAS PubMed Google Scholar
- Morice, P. et al. Lymph node involvement in epithelial ovarian cancer: analysis of 276 pelvic and paraaortic lymphadenectomies and surgical implications. J. Am. Coll. Surg. 197, 198–205 (2003).
PubMed Google Scholar
- Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K. & Leung, P. C. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288 (2001). An insightful and comprehensive overview of ovarian surface epithelial cell biology.
CAS PubMed Google Scholar
- Burleson, K. M. et al. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 93, 170–181 (2004).
CAS PubMed Google Scholar
- Mutsaers, S. E. Mesothelial cells: their structure, function and role in serosal repair. Respirology 7, 171–191 (2002).
PubMed Google Scholar
- Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).
CAS PubMed Google Scholar
- Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).
CAS PubMed Google Scholar
- Torres-Arzayus, M. I. et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6, 263–274 (2004).
CAS PubMed Google Scholar
- Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).
CAS PubMed Google Scholar
- Hayashido, Y. et al. Estradiol and fibulin-1 inhibit motility of human ovarian- and breast-cancer cells induced by fibronectin. Int. J. Cancer 75, 654–658 (1998).
CAS PubMed Google Scholar
- Kuang, S. Q. et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res. 64, 1875–1885 (2004).
CAS PubMed Google Scholar
- Oh, A. et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res. 64, 8299–8308 (2004).
CAS PubMed Google Scholar
- Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001). Shows that the EGF receptor and PVF1 receptor function redundantly in border-cell migration.
CAS PubMed Google Scholar
- McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003). Shows that PVF1 is a guidance factor by demonstrating that ectopic expression of PVF1 can direct border cells to migrate to a new location.
CAS PubMed Google Scholar
- Bartlett, J. M. et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br. J. Cancer 73, 301–306 (1996).
CAS PubMed PubMed Central Google Scholar
- Chen, Z. et al. Ovarian epithelial carcinoma tyrosine phosphorylation, cell proliferation, and ezrin translocation are stimulated by interleukin 1α and epidermal growth factor. Cancer 92, 3068–3075 (2001).
CAS PubMed Google Scholar
- Alper, O. et al. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl Cancer Inst. 93, 1375–1384 (2001).
CAS PubMed Google Scholar
- Ellerbroek, S. M. et al. Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res. 61, 1855–1861 (2001).
CAS PubMed Google Scholar
- Zebrowski, B. K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol. 6, 373–378 (1999).
CAS PubMed Google Scholar
- Nagy, J. A. et al. Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Res. 55, 360–368 (1995).
CAS PubMed Google Scholar
- Byrne, A. T. et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res. 9, 5721–5728 (2003). Shows that VEGF is a causative factor in ascites accumulation.
CAS PubMed Google Scholar
- Mesiano, S., Ferrara, N. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol. 153, 1249–1256 (1998).
CAS PubMed PubMed Central Google Scholar
- Xu, L. et al. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol. 16, 445–454 (2000).
CAS PubMed Google Scholar
- Chen, H., Ye, D., Xie, X., Chen, B. & Lu, W. VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol. Oncol. 94, 630–635 (2004).
CAS PubMed Google Scholar
- Bartoli, M. et al. Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J. Biol. Chem. 275, 33189–33192 (2000).
CAS PubMed Google Scholar
- Traxler, P. et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 64, 4931–4941 (2004).
CAS PubMed Google Scholar
- Pustilnik, T. B. et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin. Cancer Res. 5, 3704–3710 (1999).
CAS PubMed Google Scholar
- Fishman, D. A., Liu, Y., Ellerbroek, S. M. & Stack, M. S. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 61, 3194–3199 (2001).
CAS PubMed Google Scholar
- Bian, D. et al. Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras–MEK Kinase 1 pathway. Cancer Res. 64, 4209–4217 (2004).
CAS PubMed Google Scholar
- Ren, X. D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).
CAS PubMed Google Scholar
- Santos, A. C. & Lehmann, R. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578–R589 (2004).
CAS PubMed Google Scholar
- Niewiadomska, P., Godt, D. & Tepass, U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).
CAS PubMed PubMed Central Google Scholar
- Sundfeldt, K. et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int. J. Cancer 74, 275–280 (1997).
CAS PubMed Google Scholar
- Sundfeldt, K. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol. Cell Endocrinol. 202, 89–96 (2003).
CAS PubMed Google Scholar
- Marques, F. R., Fonsechi-Carvasan, G. A., De Angelo Andrade, L. A. & Bottcher-Luiz, F. Immunohistochemical patterns for α- and β-catenin, E- and N-cadherin expression in ovarian epithelial tumors. Gynecol. Oncol. 94, 16–24 (2004).
CAS PubMed Google Scholar
- Kang, Y. & Massague, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).
CAS PubMed Google Scholar
- Rangel, L. B. et al. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin. Cancer Res. 9, 2567–2575 (2003).
CAS PubMed Google Scholar
- Abdelilah-Seyfried, S., Cox, D. N. & Jan, Y. N. Bazooka is a permissive factor for the invasive behavior of discs large tumor cells in Drosophila ovarian follicular epithelia. Development 130, 1927–1935 (2003).
CAS PubMed Google Scholar
- Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).
CAS PubMed Google Scholar
- Cheng, W., Liu, J., Yoshida, H., Rosen, D. & Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nature Med. 10 Apr 2005 (10.1038/nm1230).
- Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002). Shows the requirement for D. melanogaster myosin VI in border-cell migration.
CAS PubMed Google Scholar
- Yoshida, H. et al. Lessons from border cell migration in the Drosophila ovary: a role for myosin VI in dissemination of human ovarian cancer. Proc. Natl Acad. Sci. USA 101, 8144–8149 (2004). Shows that myosin VI contributes to the motility of ovarian carcinoma cells in vitro and in the mouse.
CAS PubMed PubMed Central Google Scholar
- Buss, F., Luzio, J. P. & Kendrick-Jones, J. Myosin VI, an actin motor for membrane traffic and cell migration. Traffic 3, 851–858 (2002).
CAS PubMed Google Scholar
- Schober, M. & Perrimon, N. Unconventional ways to travel. Nature Cell Biol. 4, E211–E212 (2002).
CAS PubMed Google Scholar
- Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001).
CAS PubMed Google Scholar
- Beccari, S., Teixeira, L. & Rorth, P. The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis. Mech. Dev. 111, 115–123 (2002).
CAS PubMed Google Scholar
- Xi, R., McGregor, J. R. & Harrison, D. A. A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Dev. Cell 4, 167–177 (2003).
CAS PubMed Google Scholar
- Huang, M., Page, C., Reynolds, R. K. & Lin, J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol. Oncol. 79, 67–73 (2000).
CAS PubMed Google Scholar
- Silver, D. L., Naora, H., Liu, J., Cheng, W. & Montell, D. J. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res. 64, 3550–3558 (2004).
CAS PubMed Google Scholar
- Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004). Shows that the DIAP1 protein is required for motility rather than for cell survival in border cells.
CAS PubMed Google Scholar
- Sasaki, H., Sheng, Y., Kotsuji, F. & Tsang, B. K. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 60, 5659–5666 (2000).
CAS PubMed Google Scholar
- Fraser, M. et al. Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod. Biol. Endocrinol. 1, 66 (2003).
PubMed PubMed Central Google Scholar
- Hibbs, K. et al. Differential gene expression in ovarian carcinoma: identification of potential biomarkers. Am. J. Pathol. 165, 397–414 (2004).
CAS PubMed PubMed Central Google Scholar
- van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).
CAS Google Scholar
- Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).
CAS PubMed Google Scholar
- Woelfle, U. et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 63, 5679–5684 (2003).
CAS PubMed Google Scholar
- Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001). Reports that chemokines and their receptors determine the metastatic destination of tumour cells.
CAS PubMed Google Scholar
- Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G. & Balkwill, F. R. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 61, 4961–4965 (2001).
CAS PubMed Google Scholar
- Donzella, G. A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med. 4, 72–77 (1998).
CAS PubMed Google Scholar
- Scotton, C. J. et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 62, 5930–5938 (2002).
CAS PubMed Google Scholar
- Foussat, A. et al. Production of stromal cell-derived factor 1 by mesothelial cells and effects of this chemokine on peritoneal B lymphocytes. Eur. J. Immunol. 31, 350–359 (2001)
CAS PubMed Google Scholar
- Freedman, R. S., Deavers, M., Liu, J. & Wang, E. Peritoneal inflammation: a microenvironment for epithelial ovarian cancer (EOC). J. Transl. Med. 2, 23 (2004).
PubMed PubMed Central Google Scholar
- Gardner, M. J., Catterall, J. B., Jones, L. M. & Turner, G. A. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin. Exp. Metastasis 14, 325–334 (1996).
CAS PubMed Google Scholar
- Strobel, T., Swanson, L. & Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res. 57, 1228–1232 (1997).
CAS PubMed Google Scholar
- Bourguignon, L. Y., Gilad, E., Rothman, K. & Peyollier, K. Hyaluronan–CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling leading to actin binding, Elk-1/estrogen receptor transcriptional activation and ovarian cancer progression. J. Biol. Chem. 280, 11961–11972 (2005).
CAS PubMed Google Scholar
- Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004).
CAS PubMed Google Scholar
- Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. 62, 1087–1092 (2002).
CAS PubMed Google Scholar
- Hu, L. et al. Vascular endothelial growth factor immunoneutralization plus paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am. J. Pathol. 161, 1917–1924 (2002).
CAS PubMed PubMed Central Google Scholar
- Sun, J. et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res. 59, 4919–4926 (1999).
CAS PubMed Google Scholar
- Adjei, A. A. et al. A Phase I trial of the farnesyl protein transferase inhibitor R115777 in combination with gemcitabine and cisplatin in patients with advanced cancer. Clin. Cancer Res. 9, 2520–2526 (2003).
CAS PubMed Google Scholar
- Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).
CAS PubMed Google Scholar
- Xie, K. & Abbruzzese, J. L. Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers. Cancer Cell 4, 245–247 (2003).
CAS PubMed Google Scholar
- Pietsch, T., Taylor, M. D. & Rutka, J. T. Molecular pathogenesis of childhood brain tumors. J. Neurooncol. 70, 203–215 (2004).
PubMed Google Scholar
- Sheng, T. et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer 3, 29 (2004).
PubMed PubMed Central Google Scholar
- Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).
CAS PubMed Google Scholar
- Sanchez, P. et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG–GLI1 signaling. Proc. Natl Acad. Sci. USA 101, 12561–12566 (2004).
CAS PubMed PubMed Central Google Scholar
- Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).
CAS PubMed Google Scholar
- Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).
CAS PubMed Google Scholar
- Peifer, M. & Yap, A. S. Traffic control: p120-catenin acts as a gatekeeper to control the fate of classical cadherins in mammalian cells. J. Cell Biol. 163, 437–440 (2003).
CAS PubMed PubMed Central Google Scholar
- Davies, B. R., Worsley, S. D. & Ponder, B. A. Expression of E-cadherin, α-catenin and β-catenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopathology 32, 69–80 (1998).
CAS PubMed Google Scholar
- Montell, D. J., Rorth, P. & Spradling, A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992).
CAS PubMed Google Scholar
- Rorth, P. & Montell, D. J. Drosophila C/EBP: a tissue-specific DNA-binding protein required for embryonic development. Genes Dev. 6, 2299–2311 (1992).
CAS PubMed Google Scholar
- Rorth, P., Szabo, K. & Texido, G. The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell 6, 23–30 (2000).
CAS PubMed Google Scholar
- Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).
CAS PubMed Google Scholar
- Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).
CAS PubMed Google Scholar
- Oda, H., Uemura, T. & Takeichi, M. Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes Cells 2, 29–40 (1997).
CAS PubMed Google Scholar
- Edwards, K. A. & Kiehart, D. P. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development 122, 1499–1511 (1996).
CAS PubMed Google Scholar
- Liu, Y. & Montell, D. J. Jing: a downstream target of slbo required for developmental control of border cell migration. Development 128, 321–330 (2001).
CAS PubMed Google Scholar
- Duchek, P. & Rorth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).
CAS PubMed Google Scholar
- Chen, J. et al. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nature Cell Biol. 3, 204–209 (2001).
CAS PubMed Google Scholar
- Sokol, N. S. & Cooley, L. Drosophila filamin is required for follicle cell motility during oogenesis. Dev. Biol. 260, 260–272 (2003).
CAS PubMed Google Scholar
- Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell 7, 85–93 (2004).
CAS PubMed Google Scholar