Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? (original) (raw)
Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature400, 464–468 (1999). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science260, 812–816 (1993). CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature386, 761–763 (1997). ArticleCASPubMed Google Scholar
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet.21, 163–167 (1999). CASPubMed Google Scholar
Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer4, 143–153 (2004). CAS Google Scholar
Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349, 2042–2054 (2003). CASPubMed Google Scholar
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet.3, 415–428 (2002). Highlights how patterns of DNA methylation and chromatin structure are profoundly altered in neoplasia. CASPubMed Google Scholar
Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature435, 1262–1266 (2005). CASPubMed Google Scholar
Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet.37, 391–400 (2005). CASPubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002). CASPubMedPubMed Central Google Scholar
Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci.116, 2117–2124 (2003). Reviews the known complexity of histone modifications including the methylation, acetylation and phosphorylation of histone residues. CASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). CASPubMed Google Scholar
Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol.15, 172–183 (2003). CASPubMed Google Scholar
Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer90, 761–769 (2004). CASPubMedPubMed Central Google Scholar
Kuzmichev, A. & Reinberg, D. Role of histone deacetylase complexes in the regulation of chromatin metabolism. Curr. Top. Microbiol. Immunol.254, 35–58 (2001). CASPubMed Google Scholar
Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nature Rev. Cancer5, 223–231 (2005). CAS Google Scholar
Akama, T. O. et al. Restriction landmark genomic scanning (RLGS-M)-based genome-wide scanning of mouse liver tumors for alterations in DNA methylation status. Cancer Res.57, 3294–3299 (1997). CASPubMed Google Scholar
Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet.24, 132–138 (2000). CASPubMed Google Scholar
Yu, L. et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nature Genet.37, 265–274 (2005). CASPubMed Google Scholar
Huang, T. H., Perry, M. R. & Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet.8, 459–470 (1999). CASPubMed Google Scholar
Shi, H. et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res.63, 2164–2171 (2003). CASPubMed Google Scholar
Salem, C. E. et al. PAX6 methylation and ectopic expression in human tumor cells. Int. J. Cancer87, 179–185 (2000). CASPubMed Google Scholar
Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet.31, 141–149 (2002). CASPubMed Google Scholar
Yamashita, K. et al. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell2, 485–495 (2002). CASPubMed Google Scholar
Toyota, M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res.59, 2307–2312 (1999). CASPubMed Google Scholar
Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95, 6870–6875 (1998). CASPubMedPubMed Central Google Scholar
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). CASPubMed Google Scholar
Myohanen, S. K., Baylin, S. B. & Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res.58, 591–593 (1998). CASPubMed Google Scholar
Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res.55, 5548–5550 (1995). CASPubMed Google Scholar
Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). CASPubMed Google Scholar
Akiyama, Y. et al. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol. Cell. Biol.23, 8429–8439 (2003). CASPubMedPubMed Central Google Scholar
Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet.36, 417–422 (2004). Demonstrates that epigenetic loss of SFRP function occurs early in colorectal cancer progression, and that restoration of SFRP function in colorectal cancer cells attenuates Wnt signalling, even in the presence of downstream mutations. CASPubMed Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002). CASPubMed Google Scholar
Bachman, K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res.59, 798–802 (1999). CASPubMed Google Scholar
Gao, X., Sedgwick, T., Shi, Y. B. & Evans, T. Distinct functions are implicated for the GATA-4, -5, and-6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol. Cell. Biol.18, 2901–2911 (1998). CASPubMedPubMed Central Google Scholar
Al-azzeh, E. et al. Gastroprotective peptide trefoil factor family 2 gene is activated by upstream stimulating factor but not by c-Myc in gastrointestinal cancer cells. Gut51, 685–690 (2002). CASPubMedPubMed Central Google Scholar
Bossenmeyer-Pourie, C. et al. The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1–S phase transition and reducing apoptosis. J. Cell Biol.157, 761–770 (2002). CASPubMedPubMed Central Google Scholar
Wright, N. A., Hoffmann, W., Otto, W. R., Rio, M. C. & Thim, L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett.408, 121–123 (1997). CASPubMed Google Scholar
Issa, J. P. CpG island methylator phenotype in cancer. Nature Rev. Cancer4, 988–993 (2004). Reviews the concept of a DNA hyper-methylated phenotype. CAS Google Scholar
Yamada, Y. et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc. Natl Acad. Sci. USA102, 13580–13585 (2005). CASPubMedPubMed Central Google Scholar
Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science299, 1753–1755 (2003). CASPubMed Google Scholar
Sakatani, T. et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science307, 1976–1978 (2005). CASPubMed Google Scholar
Holm, T. M. et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell8, 275–285 (2005). CASPubMed Google Scholar
Belinsky, S. A. et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl Acad. Sci. USA95, 11891–11896 (1998). CASPubMedPubMed Central Google Scholar
Nuovo, G. J., Plaia, T. W., Belinsky, S. A., Baylin, S. B. & Herman, J. G. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc. Natl Acad. Sci. USA96, 12754–12759 (1999). CASPubMedPubMed Central Google Scholar
Swafford, D. S. et al. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol. Cell. Biol.17, 1366–1374 (1997). CASPubMedPubMed Central Google Scholar
Lee, W. H. et al. Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91, 11733–11737 (1994). CASPubMedPubMed Central Google Scholar
Holst, C. R. et al. Methylation of p16INK4a promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res.63, 1596–1601 (2003). CASPubMed Google Scholar
Romanov, S. R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature409, 633–637 (2001). CASPubMed Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998). CASPubMed Google Scholar
Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B. & Herman, J. G. Inactivation of the DNA repair gene _O_6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res.59, 793–797 (1999). CASPubMed Google Scholar
Esteller, M. et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res.60, 4366–4371 (2000). CASPubMed Google Scholar
Nelson, W. G., De Marzo, A. M. & Isaacs, W. B. Prostate cancer. N. Engl. J. Med.349, 366–381 (2003). CASPubMed Google Scholar
Wong, D. J., Foster, S. A., Galloway, D. A. & Reid, B. J. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol. Cell. Biol.19, 5642–5651 (1999). CASPubMedPubMed Central Google Scholar
Bronner, C. E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature368, 258–261 (1994). CASPubMed Google Scholar
Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res.57, 808–811 (1997). CASPubMed Google Scholar
Ahrendt, S. A. et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl Cancer Inst.91, 332–339 (1999). CASPubMed Google Scholar
Esteller, M. et al. Promoter hypermethylation of the DNA repair gene _O_6-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res.61, 4689–4692 (2001). CASPubMed Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science297, 63–64 (2002). CASPubMed Google Scholar
Gregorieff, A. & Clevers, H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev.19, 877–890 (2005). CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature386, 761–763 (1997). CASPubMed Google Scholar
Weinstein, I. B. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis21, 857–864 (2000). CASPubMed Google Scholar
Jen, J. et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res.54, 5523–5526 (1994). CASPubMed Google Scholar
DeAngelo, A. B., Geter, D. R., Rosenberg, D. W., Crary, C. K. & George, M. H. The induction of aberrant crypt foci (ACF) in the colons of rats by trihalomethanes administered in the drinking water. Cancer Lett.187, 25–31 (2002). CASPubMed Google Scholar
Hao, X. P., Pretlow, T. G., Rao, J. S. & Pretlow, T. P. β-Catenin expression is altered in human colonic aberrant crypt foci. Cancer Res.61, 8085–8088 (2001). CASPubMed Google Scholar
Mori, H., Yamada, Y., Kuno, T. & Hirose, Y. Aberrant crypt foci and β-catenin accumulated crypts; significance and roles for colorectal carcinogenesis. Mutat. Res.566, 191–208 (2004). CASPubMed Google Scholar
Papanikolaou, A., Wang, Q. S., Delker, D. A. & Rosenberg, D. W. Azoxymethane-induced colon tumors and aberrant crypt foci in mice of different genetic susceptibility. Cancer Lett.130, 29–34 (1998). CASPubMed Google Scholar
Papanikolaou, A., Wang, Q. S., Papanikolaou, D., Whiteley, H. E. & Rosenberg, D. W. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis21, 1567–1572 (2000). CASPubMed Google Scholar
Siu, I. M. et al. The identification of monoclonality in human aberrant crypt foci. Cancer Res.59, 63–66 (1999). CASPubMed Google Scholar
Yuan, P., Sun, M. H., Zhang, J. S., Zhu, X. Z. & Shi, D. R. APC and K-ras gene mutation in aberrant crypt foci of human colon. World J. Gastroenterol.7, 352–356 (2001). CASPubMedPubMed Central Google Scholar
Finch, P. W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl Acad. Sci. USA94, 6770–6775 (1997). CASPubMedPubMed Central Google Scholar
Melkonyan, H. S. et al. SARPs: a family of secreted apoptosis-related proteins. Proc. Natl Acad. Sci. USA94, 13636–13641 (1997). CASPubMedPubMed Central Google Scholar
Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA94, 2859–2863 (1997). CASPubMedPubMed Central Google Scholar
Taketo, M. M. Shutting down Wnt signal-activated cancer. Nature Genet.36, 320–322 (2004). CASPubMed Google Scholar
Wales, M. M. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Med.1, 570–577 (1995). CASPubMed Google Scholar
Guerardel, C. et al. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J. Biol. Chem.276, 3078–3089 (2001). CASPubMed Google Scholar
Fujii, H. et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene16, 2159–2164 (1998). CASPubMed Google Scholar
Carter, M. G. et al. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller–Dieker syndrome. Hum. Mol. Genet.9, 413–419 (2000). CASPubMed Google Scholar
Chen, W. Y. et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nature Genet.33, 197–202 (2003). CASPubMed Google Scholar
Chen, W. et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell6, 387–398 (2004). CASPubMed Google Scholar
Chen W. et al. Tumor suppressor HIC1 directly regulates SIRT1 and modulates p53-dependent apoptotic DNA damage responses. Cell123, 437–448 (2005). Reports that the silencing of HIC1 in tumorigenesis might activate a network of events that lead to partial downregulation of p53 function and then to mutations in p53. CASPubMed Google Scholar
Frye, R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun.260, 273–279 (1999). CASPubMed Google Scholar
Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001). CASPubMed Google Scholar
Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J.21, 2383–2396 (2002). CASPubMedPubMed Central Google Scholar
Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell107, 137–148 (2001). CASPubMed Google Scholar
Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet.37, 899–905 (2005). CASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). CASPubMed Google Scholar
Tlsty, T. D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol.11, 97–104 (2001). CASPubMed Google Scholar
Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature429, 457–463 (2004). CASPubMed Google Scholar
Issa, J. P., Kantarjian, H. M. & Kirkpatrick, P. Azacitidine. Nature Rev. Drug Discov.4, 275–276 (2005). CAS Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). CASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev.12, 198–209 (2002). CASPubMed Google Scholar
Lund, A. H. & van Lohuizen, M. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol.16, 239–246 (2004). CASPubMed Google Scholar
Gasser, S. M. Positions of potential: nuclear organization and gene expression. Cell104, 639–642 (2001). CASPubMed Google Scholar
Levine, S. S., King, I. F. & Kingston, R. E. Division of labor in polycomb group repression. Trends Biochem. Sci.29, 478–485 (2004). CASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). CASPubMed Google Scholar
Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell118, 409–418 (2004). CASPubMed Google Scholar
Kuzmichev, A. et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA102, 1859–1864 (2005). CASPubMedPubMed Central Google Scholar
Lund, A. H. & van Lohuizen, M. Epigenetics and cancer. Genes Dev.18, 2315–2335 (2004). CASPubMed Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). CASPubMed Google Scholar
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100, 11606–11611 (2003). CASPubMedPubMed Central Google Scholar
Kirmizis, A., Bartley, S. M. & Farnham, P. J. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol. Cancer Ther.2, 113–121 (2003). CASPubMed Google Scholar
Lessard, J. et al. Functional antagonism of the Polycomb-group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev.13, 2691–2703 (1999). CASPubMedPubMed Central Google Scholar
Selker, E. U., Jensen, B. C. & Richardson, G. A. A portable signal causing faithful DNA methylation de novo in Neurospora crassa. Science238, 48–53 (1987). CASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). CASPubMed Google Scholar
Tamaru, H. & Selker, E. U. Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol. Cell. Biol.23, 2379–2394 (2003). CASPubMedPubMed Central Google Scholar
Bell, M. V. et al. Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell64, 861–866 (1991). CASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). CASPubMed Google Scholar
Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol.12, 1360–1367 (2002). CASPubMed Google Scholar
Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev.14, 155–164 (2004). CASPubMed Google Scholar
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). CASPubMed Google Scholar
Ayyanathan, K. et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev.17, 1855–1869 (2003). A model of the evolution of the abnormal heritable transcriptional gene silencing that occurs during tumour progression. CASPubMedPubMed Central Google Scholar
Fahrner, J. A. & Baylin, S. B. Heterochromatin: stable and unstable invasions at home and abroad. Genes Dev.17, 1805–1812 (2003). CASPubMed Google Scholar
Fahrner, J. A., Eguchi, S., Herman, J. G. & Baylin, S. B. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res.62, 7213–7218 (2002). CASPubMed Google Scholar
Kondo, Y., Shen, L. & Issa, J. P. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol. Cell. Biol.23, 206–215 (2003). CASPubMedPubMed Central Google Scholar
Nguyen, C. T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res.62, 6456–6461 (2002). CASPubMed Google Scholar
Ghoshal, K. et al. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol. Cell. Biol.22, 8302–8319 (2002). CASPubMedPubMed Central Google Scholar
Koizume, S., Tachibana, K., Sekiya, T., Hirohashi, S. & Shiraishi, M. Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res.30, 4770–4780 (2002). CASPubMedPubMed Central Google Scholar
Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet.21, 103–107 (1999). CASPubMed Google Scholar
Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer3, 253–266 (2003). CAS Google Scholar