The resurgence of platinum-based cancer chemotherapy (original) (raw)

References

  1. Rosenberg, B., VanCamp, L., Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).
    Article CAS PubMed Google Scholar
  2. Rosenberg, B., VanCamp, L., Trosko, J. E., Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386 (1969).
    Article CAS PubMed Google Scholar
  3. Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).
    Article CAS PubMed Google Scholar
  4. Chaney, S. G., Campbell, S. L., Temple, B., Bassett, E., Wu, Y., Faldu, M. Protein interactions with platinum–DNA adducts: from structure to function. J. Inorg. Biochem. 98, 1551–1559 (2004).
    Article CAS PubMed Google Scholar
  5. Eastman, A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 2, 275–280 (1990).
    CAS PubMed Google Scholar
  6. Cvitkovic, E., Spaulding, J., Bethune, V., Martin, J., Whitmore, W. F. Improvement of cis-dichlorodiammineplatinum (NSC 119875): therapeutic index in an animal model. Cancer 39, 1357–1361 (1977).
    Article CAS PubMed Google Scholar
  7. Harrap, K. R. Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat. Rev. 12, 21–33 (1985).
    Article CAS PubMed Google Scholar
  8. Knox, R. J., Friedlos, F., Lydall, D. A., Roberts, J. J. Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res. 46, 1972–1979 (1986).
    CAS PubMed Google Scholar
  9. Aabo, K., et al. Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 37 randomized trials. Advanced Ovarian Cancer Trialists' Group. Br. J. Cancer 78, 1479–1487 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  10. Kelland, L. R., et al. Mechanism-related circumvention of _cis_-diamminedichloroplatinum(II) acquired resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res. 52, 3857–3864 (1992).
    CAS PubMed Google Scholar
  11. Gately, D. P., Howell, S. B. Cellular accumulation of the anticancer agent cisplatin: a review. Br. J. Cancer 67, 1171–1176 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  12. Ishida, S., Lee, J., Thiele, D. J., Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl Acad. Sci. USA 99, 14298–14302 (2002). This work identifies the role of the protein CTR1, normally involved in copper homeostasis, in transporting cisplatin into cells.
    Article CAS PubMed PubMed Central Google Scholar
  13. Katano, K., et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res. 62, 6559–6565 (2002).
    CAS PubMed Google Scholar
  14. Holzer, A. K., Manorek, G. H., Howell, S. B. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin and oxaliplatin. Molec. Pharmacol. 70, 1390–1394 (2006).
    Article CAS Google Scholar
  15. Holzer, A. K., Howell, S. B. The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res. 66, 10944–10952 (2006).
    Article CAS PubMed Google Scholar
  16. Safaei, R., Holzer, A. K., Katano, K., Samimi, G., Howell, S. B. The role of copper transporters in the development of resistance to Pt drugs. J. Inorg. Chem. 98, 1607–1613 (2004).
    CAS Google Scholar
  17. Samimi, G., et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. 10, 4661–4669 (2004).
    Article CAS PubMed Google Scholar
  18. Mistry, P., Kelland, L. R., Abel, G., Sidhar, S., Harrap, K. R. The relationships between glutathione, glutathione-_S_-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br. J. Cancer 64, 215–220 (1991). One of the first preclinical studies identifying a correlation between increased levels of glutathione and resistance to cisplatin and carboplatin in ovarian carcinoma cells.
    Article CAS PubMed PubMed Central Google Scholar
  19. Ishikawa, T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 463–468 (1992).
    Article CAS PubMed Google Scholar
  20. Lewis, A. D., Hayes, J. D., Wolf, C. R. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis, 9, 1283–1287 (1988).
    Article CAS PubMed Google Scholar
  21. Yang, P., Ebbert, J. O., Sun, Z., Weinshilboum, R. M. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: a review. J. Clin. Oncol. 24, 1761–1769 (2006).
    Article CAS PubMed Google Scholar
  22. Kelley, S. L. et al. Overexpression of metallothionein confers resistance to anticancer drugs. Science 241, 1813–1815 (1988).
    Article CAS PubMed Google Scholar
  23. Holford, J., Beale, P. J., Boxall, F. E., Sharp, S. Y., Kelland, L. R. Mechanisms of drug resistance to the platinum complex ZD0473 in ovarian cancer cell lines. Eur. J. Cancer 36, 1984–1990 (2000).
    Article CAS PubMed Google Scholar
  24. Johnson, S., et al. Relationship between platinum–DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res. 54, 5911–5916 (1994).
    CAS PubMed Google Scholar
  25. Ferry, K. V., Hamilton, T. C., Johnson, S. W. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem. Pharmacol. 60, 1305–1313 (2000).
    Article CAS PubMed Google Scholar
  26. Chang, I. Y., et al. Small interfering RNA-induced suppression of ERCC1, enhances sensitivity of human cancer cells to cisplatin. Biochem. Biophys. Res. Commun. 327, 225–233 (2005).
    Article CAS PubMed Google Scholar
  27. Dabholkar, M., Bostick-Bruton, F., Weber, C., Bohr, V. A., Egwuagu, C., Reed, E. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J. Natl. Cancer Inst. 84, 1512–1517 (1992). An original clinical translational study linking overexpression of the NER DNA-repair pathway gene ERCC1 to poor response to platinum-based chemotherapy in patients with ovarian cancer.
    Article CAS PubMed Google Scholar
  28. Reed, E. ERCC1 and clinical resistance to platinum-based therapy. Clin. Cancer Res. 11, 6100–6102 (2005).
    Article CAS PubMed Google Scholar
  29. Fink, D. et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881–4886 (1996).
    CAS PubMed Google Scholar
  30. Zdraveski, Z. Z., Mello, J. A., Farinelli, C. K., Essigmann, J. M., Marinus, M. G. MutS preferentially recognises cisplatin-over oxaliplatin-modified DNA. J. Biol. Chem. 277, 1255–1260 (2002).
    Article CAS PubMed Google Scholar
  31. Gifford, G., Paul, J., Vasey, P. A., Kaye, S. B., Brown, R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin. Cancer Res. 10, 4420–4426 (2004). A clinical translational study in ovarian cancer patients showing that loss of function of the DNA-mismatch-repair pathway through hypermethylation of the hMLH1 gene after chemotherapy, predicts poor survival.
    Article CAS PubMed Google Scholar
  32. Helleman, J., et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer 6, 201 (2006).
    Article PubMed PubMed Central CAS Google Scholar
  33. Bassett, E., et al. Frameshifts and deletions during in vitro translesion synthesis past Pt-DNA adducts by DNA polymerases β and η. DNA repair 1, 1003–1016 (2002).
    Article CAS PubMed Google Scholar
  34. Albertella, M. R., Green, C. M., Lehmann, A. R., O'Connor, M. J. A role for polymerase η in the cellular tolerance to cisplatin-induced damage. Cancer Res. 65, 9799–9806 (2005). Experiments indicating that inhibition of DNA polymerase η could increase the anticancer effectiveness of cisplatin.
    Article CAS PubMed Google Scholar
  35. Gadducci, A., Cosio, S., Muraca, S., Genazzani, A. R. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur. J. Gynaecol. Oncol. 23, 390–396 (2002).
    CAS PubMed Google Scholar
  36. Kelland, L. R. Overcoming resistance to platinum therapy in patients with advanced cancer. Am. J. Cancer 1, 247–255 (2002).
    Article CAS Google Scholar
  37. Kidani, Y., Inagaki, K., Iigo, M., Hoshi, A., Kuretani, K. Antitumor activity of 1,2-diaminocyclohexane-platinum complexes against sarcoma-180 ascites form. J. Med. Chem. 21, 1315–1318 (1978).
    Article CAS PubMed Google Scholar
  38. Rixe, O., et al. Oxaliplatin, tetraplatin, cisplatin and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Biochem. Pharmacol. 52, 1855–1865 (1996).
    Article CAS PubMed Google Scholar
  39. Spingler, B., Whittington, D. A., Lippard, S. J. 2.4Å crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand cross-link in a DNA dodecamer duplex. Inorg. Chem. 40, 5596–5602 (2001).
    Article CAS PubMed Google Scholar
  40. Raymond, E., Faivre, S., Chaney, S., Woynarowski, J., Cvitkovic, E. Cellular and molecular pharmacology of oxaliplatin. Mol. Cancer Ther. 1, 227–235 (2002).
    CAS PubMed Google Scholar
  41. Machover, D., et al. Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann. Oncol. 7, 95–98 (1996).
    Article CAS PubMed Google Scholar
  42. Levi, F., et al. A chronopharmacologic phase II clinical trial with 5-fluorouracil, folinic acid, and oxaliplatin using an ambulatory multichannel programmable pump. High antitumour effectiveness against metastatic colorectal cancer. Cancer 69, 893–900 (1992).
    Article CAS PubMed Google Scholar
  43. Giacchetti, S., et al. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 18, 136–147 (2000).
    Article CAS PubMed Google Scholar
  44. De Gramont, A., et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938–2947 (2000).
    Article CAS PubMed Google Scholar
  45. Rothenberg, M. L., et al. Superiority of oxaliplatin and fluorouracil–leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil–leucovorin: interim results of a Phase III trial. J. Clin. Oncol. 21, 2059–2069 (2003).
    Article CAS PubMed Google Scholar
  46. Goldberg, R. M., et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. 22, 23–29 (2004). A key clinical phase III study showing significantly improved survival with oxaliplatin, fluorouracil/leucovorin (FOLFOX regimen) in patients with previously untreated metastatic colorectal cancer.
    Article CAS PubMed Google Scholar
  47. Kelland, L. R., et al. Preclinical antitumor evaluation of Bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res. 53, 2581–2586 (1993). The first paper demonstrating, in preclinical tumour models, the feasibility of achieving antitumour activity with an orally administered platin, JM216/satraplatin.
    CAS PubMed Google Scholar
  48. McKeage, M. J. et al. Schedule dependency of orally administered Bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) in vivo. Cancer Res. 54, 4118–4122 (1994).
    CAS PubMed Google Scholar
  49. Sharp, S. Y., Rogers, P. M., Kelland, L. R. Transport of cisplatin and Bis-acetato-ammine-dichlorocyclohexylamine platinum(IV) (JM216) in human ovarian carcinoma cell lines: identification of a plasma membrane protein associated with cisplatin resistance. Clin. Cancer Res. 1, 981–989 (1995).
    CAS PubMed Google Scholar
  50. Kelland, L. R. An update on satraplatin: the first orally available platinum anticancer drug. Exp. Opin. Invest. Drugs 9, 1373–1382 (2000).
    Article CAS Google Scholar
  51. Samimi, G., Howell, S. B. Modulation of the cellular pharmacology of JM118, the major metabolite of satraplatin, by copper influx and efflux transporters. Cancer Chemother. Pharmacol. 57, 781–788 (2006).
    Article CAS PubMed Google Scholar
  52. Silverman, A. P., Bu, W., Cohen, S. M., Lippard, S. J. 2.4-Å crystal structure of the asymmetric platinum complex [Pt(ammine)(cyclohexylamine)]2+ bound to a dodecamer DNA duplex. J. Biol. Chem. 277, 49743–49749 (2002).
    Article CAS PubMed Google Scholar
  53. Reardon, J. T., Vaisman, A., Chaney, S. G., Sancar, A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res. 59, 3968–3971 (1999).
    CAS PubMed Google Scholar
  54. McKeage, M. J., et al. Phase I and pharmacokinetic study of an oral platinum complex given daily for 5 days in patients with cancer. J. Clin. Oncol. 15, 2691–2700 (1997).
    Article CAS PubMed Google Scholar
  55. Choy, H. Satraplatin: an orally available platinum analog for the treatment of cancer. Expert Rev. Anticancer Ther. 6, 973–982 (2006).
    Article CAS PubMed Google Scholar
  56. McKeage, M. J. Satraplatin in hormone-refractory prostate cancer and other tumour types: pharmacological properties and clinical evaluation. Drugs 67, 859–869 (2007).
    Article CAS PubMed Google Scholar
  57. Sternberg, C. N., et al. Phase III trial of Satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer. Oncology, 68, 2–9 (2005). A pivotal clinical study demonstrating the potential clinical benefit of satraplatin in patients with hormone-refractory prostate cancer.
    Article CAS PubMed Google Scholar
  58. Holford, J., Sharp, S. Y., Murrer, B. A., Abrams, M., Kelland, L. R. In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br. J. Cancer 77, 366–373 (1998). The first studies with JM473/picoplatin, showing retention of activity in vitro against several cisplatin-resistant tumour cell lines of defined mechanisms of resistance.
    Article CAS PubMed PubMed Central Google Scholar
  59. Holford, J., et al. Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, _cis_-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anticancer Drug Design 13, 1–18 (1998).
    CAS Google Scholar
  60. Sharp, S. Y., O'Neill, C. F., Rogers, P. M., Boxall, F. E, Kelland, L. R. Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin. Eur. J. Cancer 38, 2309–2315 (2002).
    Article CAS PubMed Google Scholar
  61. Raynaud, F. I. et al. _Cis_-amminedichloro(2-methylpyridine) platinum (II) (AMD473), a novel sterically hindered platinum complex: in vivo activity, toxicology and pharmacokinetics in mice. Clin. Cancer Res. 3, 2063–2074 (1997).
    CAS PubMed Google Scholar
  62. Rogers, P., Boxall, F. E., Allot, C. P., Stephens, T. C., Kelland, L. R. Sequence-dependent synergism between the new generation platinum agent ZD0473 and paclitaxel in cisplatin-sensitive and -resistant human ovarian carcinoma cell lines. Eur. J. Cancer 38, 1653–1660 (2002).
    Article CAS PubMed Google Scholar
  63. Gore, M. E., et al. A phase II trial of ZD0473 in platinum-pretreated ovarian cancer. Eur. J. Cancer, 38, 2416–2420 (2002).
    Article CAS PubMed Google Scholar
  64. Treat, J., et al. ZD0473 treatment in lung cancer: an overview of the clinical trial results. Eur. J. Cancer 38, S13–S18 (2002). A summary of early-phase clinical studies of picoplatin in patients with lung cancer, demonstrating potential utility in cisplatin-resistant small-cell lung cancer.
    Article CAS PubMed Google Scholar
  65. Beale, P. et al. A phase I clinical and pharmacological study of _cis_-diamminedichloro(2-methylpyridine) platinum II (AMD473). Br. J. Cancer 88, 1128–1134 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  66. Brabec, V. et al. DNA modifications by a novel bifunctional trinuclear platinum phase I anticancer agent. Biochemistry 38, 6781–6790 (1999).
    Article CAS PubMed Google Scholar
  67. Akaza, H. et al. Phase II study of _cis_-diammine(glycolato)platinum, 254–S, in patients with advanced germ-cell testicular cancer, prostatic cancer, and transitional-cell carcinoma of the urinary tract. Cancer Chemother. Pharmacol. 31, 187–192 (1992).
    Article CAS PubMed Google Scholar
  68. Gordon, A. N., et al. Long-term survival advantage for women treated with pegylated liposomal doxorubicin compared with topotecan in a phase 3 randomized study of recurrent and refractory epithelial ovarian cancer. Gynecol. Oncol. 95, 1–8 (2004).
    Article CAS PubMed Google Scholar
  69. Gradishar, W. J., et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).
    Article CAS PubMed Google Scholar
  70. White, S. C. et al. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small cell lung cancer. Br. J. Cancer, 95, 822–828 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  71. Dragovich, T., Mendelson, D., Kurtin, S., Richardson, K., Von Hoff, D., Hoos, A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother. Pharmacol. 58, 759–764 (2006).
    Article CAS PubMed Google Scholar
  72. Rademaker-Lakhai, J. M., et al. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 10, 3386–3395 (2004).
    Article CAS PubMed Google Scholar
  73. Rice, J. R., Gerberich, J. L., Nowotnik, D. P., Howell, S. B. Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin. Cancer Res. 12, 2248–2254 (2006).
    Article CAS PubMed Google Scholar
  74. Campone, M., et al. Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother. Pharmacol. 17 Feb 2007 (doi:10.1007/s00280-006-0397-0).
  75. Armstrong, D. K., et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354, 34–43 (2006). The most recent of 3 randomized trials in patients with ovarian cancer indicating an improvement in tumour response rates through intraperitoneal administration of platinum-based chemotherapy.
    Article CAS PubMed Google Scholar
  76. Morgan, A. S., et al. Tumor efficacy and bone-marrow sparing properties of TER286, a cytotoxin activated by glutathione _S_-transferase. Cancer Res. 58, 2568–2575 (1998).
    CAS PubMed Google Scholar
  77. Townsend, D. M., Shen, H., Staros, A. L., Gate, L., Tew, K. D. Efficacy of a glutathione _S_-transferase π-activated prodrug in platinum-resistant ovarian cancer cells. Mol. Cancer Ther. 1, 1089–1095 (2002).
    CAS PubMed PubMed Central Google Scholar
  78. Rosen, L. S., Phase I study of TLK286 (Telcyta) administered weekly in advanced malignancies. Clin. Cancer Res. 10, 3689–3698 (2004).
    Article CAS PubMed Google Scholar
  79. Kavanagh, J. J., et al. Multi-institutional phase 2 study of TLK286 (TELCYTA, a glutathione _S_-transferase P1–1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer. Int. J. Gynecol. Cancer 15, 593–600 (2005).
    CAS PubMed Google Scholar
  80. Plumb, J. A., Strathdee, G., Sludden, J., Kaye, S. B., Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60, 6039–6044 (2000).
    CAS PubMed Google Scholar
  81. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
    Article CAS PubMed Google Scholar
  82. Collins, I., Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006).
    Article CAS Google Scholar
  83. Sandler, A., et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006). The first demonstration of clinical proof of principle for the use of platinum-based chemotherapy (carboplatin) in combination with a molecularly targeted drug (bevacizumab).
    Article CAS PubMed Google Scholar
  84. McKeage, M. J., Kelland, L. R. 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Clinical potential in combination with taxane-based chemotherapy. Am. J. Cancer, 5, 155–162 (2006).
    Article CAS Google Scholar
  85. Pietras, R. J., Fendly, B. M., Chazin, V. R., Pegram, M. D., Howell, S. B., Slamon, D. J. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene, 9, 1829–1838 (1994).
    CAS PubMed Google Scholar
  86. Pegram, M. D., et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J. Natl. Cancer Inst. 96, 759–769 (2004).
    Article CAS PubMed Google Scholar
  87. Hurley, J., et al. Docetaxel, cisplatin and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J. Clin. Oncol. 24, 1831–1838 (2006).
    Article CAS PubMed Google Scholar
  88. Bhattacharyya, A., Ear, U. S., Koller, B. H., Weichselbaum, R. R., Bishop, D. K. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J. Biol. Chem. 275, 23899–23903 (2000). A preclinical study showing that breast cancer cells harbouring BRCA1 mutations are hypersensitive to cisplatin.
    Article CAS PubMed Google Scholar
  89. Turner, N., Tutt, A., Ashworth, A. Targeting the DNA repair defect of BRCA tumours. Curr. Opin. Pharmacol. 5, 388–393 (2005).
    Article CAS PubMed Google Scholar
  90. Beuvink, I, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120, 747–759 (2005).
    Article CAS PubMed Google Scholar
  91. Morgan-Lappe, S., et al. RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene, 25, 1340–1348 (2006).
    Article CAS PubMed Google Scholar
  92. Roberts, D., et al. Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells. Br. J. Cancer 92, 1149–1158 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  93. Olivero, M., et al. Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cells to cisplatin. Mol. Cancer Ther. 5, 1126–1135 (2006).
    Article CAS PubMed Google Scholar
  94. Davies, M. S., Berners-Price, S. J., Hambley, T. W. Rates of platination of –AG- and –GA- containing double-stranded oligonucleotides: effect of chloride concentration. J. Inorg. Biochem. 79, 167–172 (2000).
    Article CAS PubMed Google Scholar
  95. Fichtinger-Schepman, A. M., van der Veer, J. L., den Hartog, J. H., Lohman, P. H., Reedijk, J. Adducts of the antitumor drug _cis_-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry, 24, 707–713 (1985).
    Article CAS PubMed Google Scholar
  96. Takahara, P. M., Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377, 649–652 (1995).
    Article CAS PubMed Google Scholar
  97. Huang, H., Zhu, L., Reid, B. R., Drobny, G. P., Hopkins, P. B. Solution structure of a cisplatin-induced interstrand cross-link. Science 270, 1842–1845 (1995).
    Article CAS PubMed Google Scholar
  98. Teuben, J. M., Bauer, C., Wang, A. H., Reedijk, J. Solution structure of a DNA duplex containing a _cis_-diammineplatinum(II) 1,3-d(GTG) intrastrand cross-link, a major adduct in cells treated with the anticancer drug carboplatin. Biochemistry 38, 12305–12312 (1999).
    Article CAS PubMed Google Scholar
  99. Einhorn, L. H. Curing metastatic testicular cancer. Proc. Natl Acad. Sci. USA 99, 4592–4595 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  100. Walker, M. C., Parris, C. N., Masters, J. R. Differential sensitivities of human testicular and bladder tumor cell lines to chemotherapeutic drugs. J. Natl Cancer Inst. 79, 213–216 (1987).
    CAS PubMed Google Scholar
  101. Kelland, L. R., et al. Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatous germ cell line. Cancer Res. 52, 1710–1716 (1992).
    CAS PubMed Google Scholar
  102. Koberle, B. et al. DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int. J. Cancer 70, 551–555 (1997).
    Article CAS PubMed Google Scholar
  103. Koberle, B., Masters, J. R., Hartley, J. A., Wood, R. D. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol. 9, 273–276 (1999). The identification of a molecular defect in the NER DNA-repair pathway causing hypersensitivity of at least some testicular cancers to cisplatin.
    Article CAS PubMed Google Scholar
  104. Welsh, C., Day, R., McGurk, C., Masters, J. R. W., Wood, R. D. Koberle, B. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer 110, 352–361 (2004).
    Article CAS PubMed Google Scholar

Download references