Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). A seminal observation of OIS. ArticleCASPubMed Google Scholar
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965). A landmark paper about the mortality of primary cells. CASPubMed Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). CASPubMedPubMed Central Google Scholar
Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell113, 703–716 (2003). CASPubMed Google Scholar
Adams, P. D. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene397, 84–93 (2007). CASPubMedPubMed Central Google Scholar
Deng, Y., Chan, S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nature Rev. Cancer8, 450–458 (2008). CAS Google Scholar
Ben-Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol.37, 961–976 (2005). CASPubMed Google Scholar
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell120, 513–522 (2005). A review about positive, but also adverse, effects of senescence on tumorigenesis, describing the potential role of a senescence-associated secretome. CASPubMed Google Scholar
Bennett, D. C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene22, 3063–3069 (2003). CASPubMed Google Scholar
Prieur, A. & Peeper, D. S. Cellular senescence in vivo: a barrier to tumorigenesis. Curr. Opin. Cell Biol.20, 150–155 (2008). CASPubMed Google Scholar
Mooi, W. J. & Peeper, D. S. Oncogene-induced cell senescence — halting on the road to cancer. N. Engl. J. Med.355, 1037–1046 (2006). CASPubMed Google Scholar
D'adda Di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nature Rev. Cancer8, 512–522 (2008). CAS Google Scholar
Finkel, T., Serrano, M. & Blasco, M. The common biology of cancer and ageing. Nature448, 767–774 (2007). CASPubMed Google Scholar
Cristofalo, V. J. & Pignolo, R. J. Molecular markers of senescence in fibroblast-like cultures. Exp. Gerontol.31, 111–123 (1996). CASPubMed Google Scholar
Goldstein, S., Moerman, E. J., Jones, R. A. & Baxter, R. C. Insulin-like growth factor binding protein 3 accumulates to high levels in culture medium of senescent and quiescent human fibroblasts. Proc. Natl Acad. Sci. USA88, 9680–9684 (1991). CASPubMedPubMed Central Google Scholar
Ferber, A. et al. Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J. Biol. Chem.268, 17883–17888 (1993). CASPubMed Google Scholar
Goldstein, S., Moerman, E. J., Fujii, S. & Sobel, B. E. Overexpression of plasminogen activator inhibitor type-1 in senescent fibroblasts from normal subjects and those with Werner syndrome. J. Cell Physiol.161, 571–579 (1994). CASPubMed Google Scholar
Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol.8, 729–740 (2007). CAS Google Scholar
Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell133, 1019–1031 (2008). CASPubMed Google Scholar
Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell133, 1006–1018 (2008). Both these papers describe the essential role of cytokines and their receptors in cellular senescence. CASPubMed Google Scholar
Larsson, O., Girnita, A. & Girnita, L. Role of insulin-like growth factor 1 receptor signalling in cancer. Br. J. Cancer92, 2097–2101 (2005). CASPubMedPubMed Central Google Scholar
Russell, S. J. & Kahn, C. R. Endocrine regulation of ageing. Nature Rev. Mol. Cell Biol.8, 681–691 (2007). CAS Google Scholar
Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocrine Rev.23, 824–854 (2002). CAS Google Scholar
Kim, K. S. et al. Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells. Aging Cell6, 535–545 (2007). CASPubMed Google Scholar
Kim, K. S. et al. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol. Biol. Cell18, 4543–4552 (2007). CASPubMedPubMed Central Google Scholar
Muck, C., Micutkova, L., Zwerschke, W. & Jansen-Durr, P. Role of insulin-like growth factor binding protein-3 in human umbilical vein endothelial cell senescence. Rejuvenation Res.11, 449–453 (2008). CASPubMed Google Scholar
Sprenger, C. C., Vail, M. E., Evans, K., Simurdak, J. & Plymate, S. R. Over-expression of insulin-like growth factor binding protein-related protein-1(IGFBP-rP1/mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin A associated apoptosis. Oncogene21, 140–147 (2002). CASPubMed Google Scholar
Wilson, H. M., Birnbaum, R. S., Poot, M., Quinn, L. S. & Swisshelm, K. Insulin-like growth factor binding protein-related protein 1 inhibits proliferation of MCF-7 breast cancer cells via a senescence-like mechanism. Cell Growth Differ.13, 205–213 (2002). CASPubMed Google Scholar
Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M. & Green, M. R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell132, 363–374 (2008). References 24, 25 and 29 show the dependence of senescence on IGFBP3, IGFBP5 and IGFBP7. CASPubMedPubMed Central Google Scholar
Pollock, P. et al. High frequency of BRAF mutations in nevi. Nature Genet.33, 19–20 (2003). CASPubMed Google Scholar
Michaloglou, C., Vredeveld, L. C., Mooi, W. J. & Peeper, D. S. BRAFE600 in benign and malignant human tumours. Oncogene27, 877–895 (2008). CASPubMed Google Scholar
Courtois-Cox, S. et al. A negative feedback signalling network underlies oncogene-induced senescence. Cancer Cell10, 459–472 (2006). CASPubMedPubMed Central Google Scholar
Denoyelle, C. et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biol.8, 1053–1063 (2006). CASPubMed Google Scholar
Gray-Schopfer, V. C. et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer95, 496–505 (2006). CASPubMedPubMed Central Google Scholar
Chakravarthy, M. V., Abraha, T. W., Schwartz, R. J., Fiorotto, M. L. & Booth, F. W. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J. Biol. Chem.275, 35942–35952 (2000). CASPubMed Google Scholar
Park, G. H. & Buetow, D. E. Genes for insulin-like growth factors I and II are expressed in senescent rat tissues. Gerontology37, 310–316 (1991). CASPubMed Google Scholar
Fu, V. X. et al. A loss of insulin-like growth factor-2 imprinting is modulated by CCCTC-binding factor down-regulation at senescence in human epithelial cells. J. Biol. Chem.279, 52218–52226 (2004). CASPubMed Google Scholar
Hernandez, L., Kozlov, S., Piras, G. & Stewart, C. L. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl Acad. Sci. USA100, 13344–13349 (2003). CASPubMedPubMed Central Google Scholar
Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol.4, 202–212 (2003). CAS Google Scholar
Hung., P. et al. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J. Pathol.214, 368–376 (2008). CASPubMed Google Scholar
Hanafusa, T. et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma. Cancer Lett.176, 149–158 (2002). CASPubMed Google Scholar
Tomii, K. et al. Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int. J. Cancer120, 566–573 (2007). CASPubMed Google Scholar
Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer6, 472–476 (2006). CAS Google Scholar
Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nature Cell Biol.8, 877–884 (2006). This articles demonstrates a causal link between PAI1 and cellular senescence. CASPubMed Google Scholar
Kortlever, R. M. & Bernards, R. Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle5, 2697–2703 (2006). CASPubMed Google Scholar
Dass, K., Ahmad, A., Azmi, A. S., Sarkar, S. H. & Sarkar, F. H. Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev.34, 122–136 (2008). CASPubMed Google Scholar
Tremain, R. et al. Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene19, 1698–1709 (2000). The first paper to describe a role for a secreted factor, that is, TGFβ in senescence. CASPubMed Google Scholar
Kortlever, R. M., Nijwening, J. H. & Bernards, R. Transforming growth factor-β requires its target plasminogen activator inhibitor-1 for cytostatic activity. J. Biol. Chem.283, 24308–24313 (2008). CASPubMedPubMed Central Google Scholar
Vijayachandra, K., Lee, J. & Glick, A. B. Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Res.63, 3447–3452 (2003). CASPubMed Google Scholar
Glick, A. B. et al. Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev.8, 2429–2440 (1994). CASPubMed Google Scholar
Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature436, 642 (2005). CASPubMed Google Scholar
Frippiat, C. et al. Subcytotoxic H2O2 stress triggers a release of transforming growth factor-β1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J. Biol. Chem.276, 2531–2537 (2001). CASPubMed Google Scholar
Debacq-Chainiaux, F. et al. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J. Cell Sci.118, 743–758 (2005). CASPubMed Google Scholar
Ye, X. et al. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell27, 183–196 (2007). Describes the link between Wnt signalling, SAHF and cellular senescence. CASPubMedPubMed Central Google Scholar
Narita, M. et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell126, 503–514 (2006). CASPubMed Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436, 660–665 (2005). CASPubMed Google Scholar
Zhang, R. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell8, 19–30 (2005). CASPubMed Google Scholar
Ye, X. et al. Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol. Cell. Biol.27, 2452–2465 (2007). CASPubMedPubMed Central Google Scholar
Liu, S. et al. Homozygous deletion of glycogen synthase kinase 3β bypasses senescence allowing Ras transformation of primary murine fibroblasts. Proc. Natl Acad. Sci. USA105, 5248–5253 (2008). CASPubMedPubMed Central Google Scholar
Damalas, A., Kahan, S., Shtutman, M., Ben-Ze'ev, A. & Oren, M. Deregulated β-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J.20, 4912–4922 (2001). CASPubMedPubMed Central Google Scholar
Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science317, 803–806 (2007). CASPubMed Google Scholar
Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Rev. Cancer8, 387–398 (2008). CAS Google Scholar
Fridman, A. L. et al. Expression profiling identifies three pathways altered in cellular immortalization: interferon, cell cycle, and cytoskeleton. J. Gerontol. A Biol. Sci. Med. Sci.61, 879–889 (2006). PubMed Google Scholar
Perera, R. et al. Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways. J. Cell. Biochem.98, 394–408 (2006). CASPubMed Google Scholar
Kulaeva, O. I. et al. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene22, 4118–4127 (2003). CASPubMed Google Scholar
Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell77, 829–839 (1994). CASPubMed Google Scholar
Li, Q. et al. Interferon regulatory factors IRF5 and IRF7 inhibit growth and induce senescence in immortal Li-Fraumeni fibroblasts. Mol. Cancer Res.6, 770–784 (2008). CASPubMed Google Scholar
Xin, H., Pereira-Smith, O. M. & Choubey, D. Role of IFI 16 in cellular senescence of human fibroblasts. Oncogene23, 6209–6217 (2004). CASPubMed Google Scholar
Sasaki, M., Ikeda, H., Sato, Y. & Nakanuma, Y. Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. Free Radic. Res.42, 625–632 (2008). CASPubMed Google Scholar
Pammer, J. et al. Interferon-α prevents apoptosis of endothelial cells after short-term exposure but induces replicative senescence after continuous stimulation. Lab. Invest.86, 997–1007 (2006). CASPubMed Google Scholar
Moiseeva, O., Mallette, F. A., Mukhopadhyay, U. K., Moores, A. & Ferbeyre, G. DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation. Mol. Biol. Cell17, 1583–1592 (2006). CASPubMedPubMed Central Google Scholar
Akiyama, M. et al. Interferon-α repressed telomerase along with G1-accumulation of Daudi cells. Cancer Lett.142, 23–30 (1999). CASPubMed Google Scholar
Kim, T. K. et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett.242, 215–221 (2006). CASPubMed Google Scholar
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol.6, e301 (2008). PubMed Central Google Scholar
Maier, J. A., Voulalas, P., Roeder, D. & Maciag, T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science249, 1570–1574 (1990). CASPubMed Google Scholar
Hsu, J. Y., Hsu, M. Y., Sorger, T., Herlyn, M. & Levine, E. M. Heparin/endothelial cell growth supplement regulates matrix gene expression and prolongs life span of vascular smooth muscle cells through modulation of interleukin-1. In Vitro Cell Dev. Biol. Anim.35, 647–654 (1999). CASPubMed Google Scholar
Ancrile, B., Lim, K. H. & Counter, C. M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev.21, 1714–1719 (2007). CASPubMedPubMed Central Google Scholar
Hong, D. S., Angelo, L. S. & Kurzrock, R. Interleukin-6 and its receptor in cancer: implications for Translational Therapeutics. Cancer110, 1911–1928 (2007). CASPubMed Google Scholar
Lu, C., Vickers, M. F. & Kerbel, R. S. Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc. Natl Acad. Sci. USA89, 9215–9219 (1992). CASPubMedPubMed Central Google Scholar
Lu, C. et al. Endogenous interleukin 6 can function as an in vivo growth-stimulatory factor for advanced-stage human melanoma cells. Clin. Cancer Res.2, 1417–1425 (1996). CASPubMed Google Scholar
Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell6, 447–458 (2004). References 78 and 82 demonstrate the pro-tumorigenic contribution of interleukins. CASPubMed Google Scholar
Kunz, C., Pebler, S., Otte, J. & von der Ahe, D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res.23, 3710–3717 (1995). CASPubMedPubMed Central Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436, 720–724 (2005). CASPubMed Google Scholar
Wakefield, L. M., Smith, D. M., Flanders, K. C. & Sporn, M. B. Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J. Biol. Chem.263, 7646–7654 (1988). CASPubMed Google Scholar
Miyazono, K., Hellman, U., Wernstedt, C. & Heldin, C. H. Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J. Biol. Chem.263, 6407–6415 (1988). CASPubMed Google Scholar
Sato, Y. & Rifkin, D. B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol.109, 309–315 (1989). CASPubMed Google Scholar
MacDonald, R. G. et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science239, 1134–1137 (1988). CASPubMed Google Scholar
Godár, S. et al. M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-beta1. Eur. J. Immunol.29, 1004–1013 (1999). PubMed Google Scholar
Nykjaer, A. et al. Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J. Cell Biol.141, 815–828 (1998). CASPubMedPubMed Central Google Scholar
Purchio, A. F. et al. Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-beta 1 precursor. J. Biol. Chem.263, 14211–14215 (1988). CASPubMed Google Scholar
Kovacina, K. S. et al. Interactions of recombinant and platelet transforming growth factor-β1 precursor with the insulin-like growth factor II/mannose 6-phosphate receptor. Biochem. Biophys. Res. Comm.160, 393–403 (1989). CASPubMed Google Scholar
Dennis, P. A. & Rifkin, D. B. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc. Natl Acad. Sci. USA88, 580–584 (1991). CASPubMedPubMed Central Google Scholar
Leksa, V. et al. TGF-β-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. J. Cell Sci.118, 4577–4586 (2005). CASPubMed Google Scholar
Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci.116, 217–224 (2003). CASPubMed Google Scholar
Kishimoto, T., Akira, S. & Taga, T. Interleukin-6 and its receptor: a paradigm for cytokines. Science258, 593–597 (1992). CASPubMed Google Scholar
Duplomb, L. et al. Soluble mannose 6-phosphate/insulin-like growth factor II (IGF-II) receptor inhibits interleukin-6-type cytokine-dependent proliferation by neutralization of IGF-II. Endocrinology144, 5381–5389 (2003). CASPubMed Google Scholar
Nolan, C. M., Kyle, J. W., Watanabe, H. & Sly, W. S. Binding of insulin-like growth factor II (IGF-II) by human cation-independent mannose 6-phosphate receptor/IGF-II receptor expressed in receptor-deficient mouse L cells. Cell Regul.1, 197–213 (1990). CASPubMedPubMed Central Google Scholar
Massagué, J., Kelly, B. & Mottola, C. Stimulation by insulin-like growth factors is required for cellular transformation by type beta transforming growth factor. J. Biol. Chem.260, 4551–4554 (1985). PubMed Google Scholar
De Souza, A. T., Hankins, G. R., Washington, M. K., Orton, T. C. & Jirtle, R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet.11, 447–449 (1995). CASPubMed Google Scholar
Huang, S. S. et al. Cellular growth inhibition by IGFBP-3 and TGF-β1 requires LRP-1. FASEB J.17, 2068–2081 (2003). CASPubMed Google Scholar
Leal, S. M., Liu, Q., Huang, S. S. & Huang, J. S. The type V transforming growth factor beta receptor is the putative insulin-like growth factor-binding protein 3 receptor. J. Biol. Chem.272, 20572–20576 (1997). CASPubMed Google Scholar
Leal, S. M., Huang, S. S. & Huang, J. S. Interactions of high affinity insulin-like growth factor-binding proteins with the type V transforming growth factor-β receptor in mink lung epithelial cells. J. Biol. Chem.274, 6711–6717 (1999). CASPubMed Google Scholar
Huang, S. S., Leal, S. M., Chen, C. L., Liu, I. H. & Huang, J. S. Identification of insulin receptor substrate proteins as key molecules for the TβR-V/LRP-1-mediated growth inhibitory signaling cascade in epithelial and myeloid cells. FASEB J.18, 1719–1721 (2004). CASPubMed Google Scholar
Huang, S. S., Leal, S. M., Chen, C. L., Liu, I. H. & Huang, J. S. Cellular growth inhibition by TGF-beta1 involves IRS proteins. FEBS Lett.565, 117–121 (2004). CASPubMed Google Scholar
Lalou, C., Silve, C., Rosato, R., Segovia, B. & Binoux, M. Interactions between insulin-like growth factor-I (IGF-I) and the system of plasminogen activators and their inhibitors in the control of IGF-binding protein-3 production and proteolysis in human osteosarcoma cells. Endocrinology135, 2318–2326 (1994). CASPubMed Google Scholar
Campbell, P. G. & Andress, D. L. Plasmin degradation of insulin-like growth factor-binding protein-5 (IGFBP-5): regulation by IGFBP-5-(201–218). Am. J. Physiol.273, E996–E1004 (1997). CASPubMed Google Scholar
Nam, T. J., Busby, W. & Clemmons, D. R. Insulin-like growth factor binding protein-5 binds to plasminogen activator inhibitor-I. Endocrinology138, 2972–2978 (1997). CASPubMed Google Scholar
Herz, J., Clouthier, D. E. & Hammer, R. E. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell71, 411–421 (1992). CASPubMed Google Scholar
Olson, D. et al. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J. Biol. Chem.267, 9129–9133 (1992). CASPubMed Google Scholar
Nykjaer, A. et al. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem.267, 14543–14546 (1992). CASPubMed Google Scholar
Orth, K., Madison, E. L., Gething, M. J., Sambrook, J. F. & Herz, J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Proc. Natl Acad. Sci. USA89, 7422–7426 (1992). CASPubMedPubMed Central Google Scholar
Conese, M. et al. α-2 Macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J. Cell Biol.131, 1609–1622 (1995). CASPubMed Google Scholar
Nykjaer, A. et al. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J.16, 2610–2620 (1997). CASPubMedPubMed Central Google Scholar
Gonias, S., Wu, L. & Salicioni, A. Low density lipoprotein receptor-related protein: regulation of the plasma membrane proteome. Thromb. Haemost.91, 1056–1064 (2004). CASPubMed Google Scholar
Fanayan, S., Firth, S. M., Butt, A. J. & Baxter, R. C. Growth inhibition by insulin-like growth factor-binding protein-3 in T47D breast cancer cells requires transforming growth factor-β (TGF-β) and the type II TGF-β receptor. J. Biol. Chem.275, 39146–39151 (2000). CASPubMed Google Scholar
Fanayan, S., Firth, S. M. & Baxter, R. C. Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-β 1 signaling. J. Biol. Chem.277, 7255–7261 (2002). CASPubMed Google Scholar
Gucev, Z. S., Oh, Y., Kelley, K. M. & Rosenfeld, R. G. Insulin-like growth factor binding protein 3 mediates retinoic acid- and transforming growth factor β2-induced growth inhibition in human breast cancer cells. Cancer Res.56, 1545–1550 (1996). CASPubMed Google Scholar
Gilardoni, M. B. et al. Decreased expression of the low-density lipoprotein receptor-related protein-1 (LRP-1) in rats with prostate cancer. J. Histochem. Cytochem.51, 1575–1580 (2003). CASPubMed Google Scholar
Gagnon, A. M., Chabot, J., Pardasani, D. & Sorisky, A. Extracellular matrix induced by TGFβ impairs insulin signal transduction in 3T3-L1 preadipose cells. J. Cell Physiol.175, 370–378 (1998). CASPubMed Google Scholar
Mincione, G. et al. TGF-β 1 modulation of IGF-I signaling pathway in rat thyroid epithelial cells. Exp. Cell Res.287, 411–423 (2003). CASPubMed Google Scholar
Weigert, C. et al. Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J. Biol. Chem.281, 7060–7067 (2006). CASPubMed Google Scholar
Senn, J. J., Klover, P. J., Nowak, I. A. & Mooney, R. A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes51, 3391–3399 (2002). CASPubMed Google Scholar
Rotter, V., Nagaev, I. & Smith, U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem.278, 45777–45784 (2003). CASPubMed Google Scholar
Andreozzi, F. et al. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol. Cell. Biol.27, 2372–2383 (2007). CASPubMedPubMed Central Google Scholar
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature445, 656–660 (2007). CASPubMedPubMed Central Google Scholar
Lewis, A. M., Varghese, S., Xu, H. & Alexander, H. R. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med.4, 48 (2006). PubMedPubMed Central Google Scholar
Yuan, A., Chen, J. J., Yao, P. L. & Yang, P. C. The role of interleukin-8 in cancer cells and microenvironment interaction. Front. Biosci.10, 853–865 (2005). CASPubMed Google Scholar
Yang, G. et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl Acad. Sci. USA103, 16472–16477 (2006). This paper shows that a secreted cytokine can induce senescence in the stroma, thereby promoting tumorigenesis. CASPubMedPubMed Central Google Scholar
Krtolica, A. & Campisi, J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int. J. Biochem. Cell Biol.34, 1401–1414 (2002). CASPubMed Google Scholar
Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science311, 1257 (2006). CASPubMed Google Scholar
Adachi, Y., Yoshio-Hoshino, N. & Nishimoto, N. The blockade of IL-6 signaling in rational drug design. Curr. Pharm. Des.14, 1217–1224 (2008). CASPubMed Google Scholar
Ancrile, B. B., O'Hayer, K. M. & Counter, C. M. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics. Mol. Interv.8, 22–27 (2008). CASPubMed Google Scholar
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA98, 12072–12077 (2001). This article shows that factors secreted by senescent cells can contribute to tumorigenesis. CASPubMedPubMed Central Google Scholar
Paradis, V. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol.32, 327–332 (2001). CASPubMed Google Scholar
Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution11, 398–411 (1957). Google Scholar
Kirkwood, T. B. & Austad, S. N. Why do we age? Nature408, 233–238 (2000). CASPubMed Google Scholar
Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep.8, 497–503 (2007). CASPubMedPubMed Central Google Scholar
Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell11, 461–469 (2007). CASPubMedPubMed Central Google Scholar
Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature448, 375–379 (2007). CASPubMed Google Scholar
Himi, T., Yoshioka, I. & Kataura, A. Influence of age on the production of interleukin-8-like chemokine (GRO/CINC-1) in rat nasal mucosa. Eur. Arch. Otorhinolaryngol.254, 101–104 (1997). CASPubMed Google Scholar
Carrieri, G. et al. The G/C915 polymorphism of transforming growth factor β1 is associated with human longevity: a study in Italian centenarians. Aging Cell3, 443–448 (2004). CASPubMed Google Scholar
Breese, C. R., Ingram, R. L. & Sonntag, W. E. Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. J. Gerontol.46, B180–B187 (1991). CASPubMed Google Scholar