Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med.10, 789–799 (2004). CASPubMed Google Scholar
Ting, A. H., McGarvey, K. M. & Baylin, S. B. The cancer epigenome — components and functional correlates. Genes Dev.20, 3215–3231 (2006). CASPubMed Google Scholar
Woutersen, R. A., Appel, M. J., van Garderen-Hoetmer, A. & Wijnands, M. V. Dietary fat and carcinogenesis. Mutat. Res.443, 111–127 (1999). CASPubMed Google Scholar
Harris, R. E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology17, 55–67 (2009). CASPubMed Google Scholar
Pidgeon, G. P. et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev.26, 503–524 (2007). CASPubMed Google Scholar
Dubois, R. N. et al. Cyclooxygenase in biology and disease. FASEB J.12, 1063–1073 (1998). CASPubMed Google Scholar
Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology107, 1183–1188 (1994). This study was the first to report that COX2 expression is increased in human CRC. CASPubMed Google Scholar
de Groot, D. J., de Vries, E. G., Groen, H. J. & de Jong, S. Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Crit. Rev. Oncol. Hematol.61, 52–69 (2007). CASPubMed Google Scholar
Gupta, R. A. et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res.63, 906–911 (2003). CASPubMed Google Scholar
Wang, D. et al. Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell6, 285–295 (2004). This report was the first to indicate crosstalk between PGE2signalling and Wnt signalling in promoting colon tumour growth. CASPubMed Google Scholar
Wang, D. & DuBois, R. N. Measurement of eicosanoids in cancer tissues. Methods Enzymol.433, 27–50 (2007). CASPubMed Google Scholar
Folco, G. & Murphy, R. C. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol. Rev.58, 375–388 (2006). CASPubMed Google Scholar
Zarini, S., Gijon, M. A., Ransome, A. E., Murphy, R. C. & Sala, A. Transcellular biosynthesis of cysteinyl leukotrienes in vivo during mouse peritoneal inflammation. Proc. Natl Acad. Sci. USA106, 8296–8301 (2009). CASPubMedPubMed Central Google Scholar
Rigas, B., Goldman, I. S. & Levine, L. Altered eicosanoid levels in human colon cancer. J. Lab. Clin. Med.122, 518–523 (1993). CASPubMed Google Scholar
Wang, D. & Dubois, R. N. Cyclooxygenase-2: a potential target in breast cancer. Semin. Oncol.31, 64–73 (2004). CASPubMed Google Scholar
McLemore, T. L. et al. Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res.48, 3140–3147 (1988). CASPubMed Google Scholar
Hambek, M. et al. Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck29, 244–248 (2007). PubMed Google Scholar
Backlund, M. G. et al. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem.280, 3217–3223 (2005). CASPubMed Google Scholar
Wolf, I. et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res.66, 7818–7823 (2006). CASPubMed Google Scholar
Hughes, D. et al. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prev. Res. (Phila Pa)1, 241–249 (2008). CAS Google Scholar
Thiel, A. et al. 15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clin. Cancer Res.15, 4572–4580 (2009). CASPubMed Google Scholar
Hansen-Petrik, M. B. et al. Prostaglandin E2 protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc_Min_/+ mice. Cancer Res.62, 403–408 (2002). CASPubMed Google Scholar
Yan, M. et al. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc. Natl Acad. Sci. USA106, 9409–9413 (2009). CASPubMedPubMed Central Google Scholar
Kawamori, T., Uchiya, N., Sugimura, T. & Wakabayashi, K. Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis24, 985–990 (2003). CASPubMed Google Scholar
Myung, S. J. et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl Acad. Sci. USA103, 12098–12102 (2006). CASPubMedPubMed Central Google Scholar
Nakanishi, M. et al. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res.68, 3251–3259 (2008). CASPubMed Google Scholar
Watanabe, K. et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res.59, 5093–5096 (1999). CASPubMed Google Scholar
Mutoh, M. et al. Involvement of prostaglandin E receptor subtype EP4 in colon carcinogenesis. Cancer Res.62, 28–32 (2002). CASPubMed Google Scholar
Sonoshita, M. et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcΔ716 knockout mice. Nature Med.7, 1048–1051 (2001). This report was first to indicate that PGE2signalling promotes tumour-associated angiogenesisin vivo . CASPubMed Google Scholar
Oshima, H. et al. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology131, 1086–1095 (2006). CASPubMed Google Scholar
Keith, R. L. et al. Prostaglandin E2 receptor subtype 2 (EP2) null mice are protected against murine lung tumorigenesis. Anticancer Res.26, 2857–2861 (2006). CASPubMed Google Scholar
Chang, S. H., Ai, Y., Breyer, R. M., Lane, T. F. & Hla, T. The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Res.65, 4496–4499 (2005). CASPubMed Google Scholar
Kawamori, T. et al. Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP1 antagonist, on breast cancer development. Carcinogenesis22, 2001–2004 (2001). CASPubMed Google Scholar
Park, J. M. et al. Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in ApcMin/+ mice. Cancer Res.67, 881–889 (2007). CASPubMed Google Scholar
Sertznig, P., Seifert, M., Tilgen, W. & Reichrath, J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J. Cell Physiol.212, 1–12 (2007). CASPubMed Google Scholar
Wolfle, D. Enhancement of carcinogen-induced malignant cell transformation by prostaglandin F2α . Toxicology188, 139–147 (2003). CASPubMed Google Scholar
Wang, D. et al. Crosstalk between peroxisome proliferator-activated receptor δand VEGF stimulates cancer progression. Proc. Natl Acad. Sci. USA103, 19069–19074 (2006). CASPubMedPubMed Central Google Scholar
Larre, S. et al. PGE2 and LTB4 tissue levels in benign and cancerous prostates. Prostaglandins Other Lipid Mediat.87, 14–19 (2008). CASPubMed Google Scholar
Dreyling, K. W. et al. Leukotriene synthesis by human gastrointestinal tissues. Biochim. Biophys. Acta878, 184–193 (1986). CASPubMed Google Scholar
Hennig, R. et al. 5-Lipoxygenase and leukotriene B4 receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol.161, 421–428 (2002). CASPubMedPubMed Central Google Scholar
Yoo, M. H., Song, H., Woo, C. H., Kim, H. & Kim, J. H. Role of the BLT2, a leukotriene B4 receptor, in Ras transformation. Oncogene23, 9259–9268 (2004). CASPubMed Google Scholar
Chen, X. et al. Leukotriene A4 hydrolase in rat and human esophageal adenocarcinomas and inhibitory effects of bestatin. J. Natl Cancer Inst.95, 1053–1061 (2003). CASPubMed Google Scholar
Ohd, J. F. et al. Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology124, 57–70 (2003). CASPubMed Google Scholar
Matsuyama, M. et al. Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol. Rep.18, 99–104 (2007). CASPubMed Google Scholar
Magnusson, C., Ehrnstrom, R., Olsen, J. & Sjolander, A. An increased expression of cysteinyl leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res.67, 9190–9198 (2007). CASPubMed Google Scholar
Wang, D., Buchanan, F. G., Wang, H., Dey, S. K. & DuBois, R. N. Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res.65, 1822–1829 (2005). CASPubMed Google Scholar
Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science310, 1504–1510 (2005). This report was the first to show that PGE2activates Wnt signalling by the disruption of a β-catenin inhibitory complex. CASPubMed Google Scholar
Krysan, K. et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res.65, 6275–6281 (2005). CASPubMed Google Scholar
Zhou, J. et al. Interactions between prostaglandin E2, liver receptor homologue-1, and aromatase in breast cancer. Cancer Res.65, 657–663 (2005). CASPubMed Google Scholar
Sheng, H., Shao, J., Morrow, J., Beauchamp, R. D. & DuBois, R. N. Modulation of apoptosis by prostaglandin treatment in human colon cancer cells. Cancer Res.58, 362–366 (1998). CASPubMed Google Scholar
Poligone, B. & Baldwin, A. S. Positive and negative regulation of NF-κB by COX-2: roles of different prostaglandins. J. Biol. Chem.276, 38658–38664 (2001). CASPubMed Google Scholar
Sales, K. J., Boddy, S. C., Williams, A. R., Anderson, R. A. & Jabbour, H. N. F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology148, 3635–3644 (2007). CASPubMed Google Scholar
Kim, J. et al. Suppression of prostate tumor cell growth by stromal cell prostaglandin D synthase-derived products. Cancer Res.65, 6189–6198 (2005). CASPubMed Google Scholar
Jeong, C. H. et al. [6]-gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res.69, 5584–5591 (2009). CASPubMed Google Scholar
Ihara, A. et al. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J. Pharmacol. Sci.103, 24–32 (2007). CASPubMed Google Scholar
Tong, W. G., Ding, X. Z., Talamonti, M. S., Bell, R. H. & Adrian, T. E. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochem. Biophys. Res. Commun.335, 949–956 (2005). CASPubMed Google Scholar
Mezhybovska, M., Wikstrom, K., Ohd, J. F. & Sjolander, A. The inflammatory mediator leukotriene D4 induces β-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. J. Biol. Chem.281, 6776–6784 (2006). CASPubMed Google Scholar
Paruchuri, S., Hallberg, B., Juhas, M., Larsson, C. & Sjolander, A. Leukotriene D4 activates MAPK through a Ras-independent but PKCɛ-dependent pathway in intestinal epithelial cells. J. Cell Sci.115, 1883–1893 (2002). CASPubMed Google Scholar
Ohd, J. F., Wikstrom, K. & Sjolander, A. Leukotrienes induce cell-survival signaling in intestinal epithelial cells. Gastroenterology119, 1007–1018 (2000). CASPubMed Google Scholar
Paruchuri, S., Mezhybovska, M., Juhas, M. & Sjolander, A. Endogenous production of leukotriene D4 mediates autocrine survival and proliferation via CysLT1 receptor signalling in intestinal epithelial cells. Oncogene25, 6660–6665 (2006). CASPubMed Google Scholar
Buchanan, F. G., Wang, D., Bargiacchi, F. & DuBois, R. N. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J. Biol. Chem.278, 35451–35457 (2003). CASPubMed Google Scholar
Buchanan, F. G. et al. Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc. Natl Acad. Sci. USA103, 1492–1497 (2006). This study was the first to report a link between PGE2signalling and the metastatic spread of colon tumour cells to the liverin vivo . CASPubMedPubMed Central Google Scholar
Han, C., Michalopoulos, G. K. & Wu, T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J. Cell Physiol.207, 261–270 (2006). CASPubMed Google Scholar
Pai, R. et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Med.8, 289–293 (2002). CASPubMed Google Scholar
Ito, H. et al. Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res.64, 7439–7446 (2004). CASPubMed Google Scholar
Pan, M. R., Hou, M. F., Chang, H. C. & Hung., W. C. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J. Biol. Chem.283, 11155–11163 (2008). CASPubMed Google Scholar
Yang, L. et al. Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Res.66, 9665–9672 (2006). CASPubMed Google Scholar
Qualtrough, D. et al. Prostaglandin F2α stimulates motility and invasion in colorectal tumor cells. Int. J. Cancer121, 734–740 (2007). CASPubMedPubMed Central Google Scholar
Sales, K. J., Boddy, S. C. & Jabbour, H. N. F-prostanoid receptor alters adhesion, morphology and migration of endometrial adenocarcinoma cells. Oncogene27, 2466–2477 (2008). CASPubMed Google Scholar
Nie, D. et al. Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res.68, 115–121 (2008). CASPubMed Google Scholar
Hennig, R. et al. LY293111 improves efficacy of gemcitabine therapy on pancreatic cancer in a fluorescent orthotopic model in athymic mice. Neoplasia7, 417–425 (2005). CASPubMedPubMed Central Google Scholar
Paruchuri, S., Broom, O., Dib, K. & Sjolander, A. The pro-inflammatory mediator leukotriene D4 induces phosphatidylinositol 3-kinase and Rac-dependent migration of intestinal epithelial cells. J. Biol. Chem.280, 13538–13544 (2005). CASPubMed Google Scholar
Liou, J. Y. et al. Cyclooxygenase-2-derived prostaglandin e2 protects mouse embryonic stem cells from apoptosis. Stem Cells25, 1096–1103 (2007). CASPubMed Google Scholar
North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature447, 1007–1011 (2007). This paper describes the first evidence that PGE2can regulate stem and progenitor cell homeostasis. CASPubMedPubMed Central Google Scholar
Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell136, 1136–1147 (2009). CASPubMedPubMed Central Google Scholar
Wada, K. et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J.20, 1785–1792 (2006). CASPubMed Google Scholar
Chung, J. W. et al. Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells. Exp. Mol. Med.37, 45–50 (2005). CASPubMed Google Scholar
Boehmler, A. M. et al. The CysLT1 ligand leukotriene D4 supports α4β1- and α5β1-mediated adhesion and proliferation of CD34+ hematopoietic progenitor cells. J. Immunol.182, 6789–6798 (2009). CASPubMed Google Scholar
Braccioni, F. et al. The effect of cysteinyl leukotrienes on growth of eosinophil progenitors from peripheral blood and bone marrow of atopic subjects. J. Allergy Clin. Immunol.110, 96–101 (2002). CASPubMed Google Scholar
Noonan, D. M., De Lerma Barbaro, A., Vannini, N., Mortara, L. & Albini, A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev.27, 31–40 (2008). PubMed Google Scholar
Mahida, Y. R. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm. Bowel Dis.6, 21–33 (2000). CASPubMed Google Scholar
Sheibanie, A. F. et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23–IL-17 axis. J. Immunol.178, 8138–8147 (2007). This was the first study that offered direct evidence that PGE2treatment exacerbates inflammation and disease severity in a mouse model of IBD. CASPubMed Google Scholar
Chizzolini, C. et al. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood112, 3696–3703 (2008). CASPubMedPubMed Central Google Scholar
Boniface, K. et al. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med.206, 535–548 (2009). CASPubMedPubMed Central Google Scholar
Yao, C. et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nature Med.15, 633–640 (2009). This paper showed the firstin vivoevidence that EP4 mediates the effects of PGE2on promoting chronic inflammation. CASPubMed Google Scholar
Scandella, E., Men, Y., Gillessen, S., Forster, R. & Groettrup, M. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood100, 1354–1361 (2002). CASPubMed Google Scholar
Angeli, V. et al. Role of the parasite-derived prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection. J. Exp. Med.193, 1135–1147 (2001). CASPubMedPubMed Central Google Scholar
Henderson, W. R. Jr. The role of leukotrienes in inflammation. Ann. Intern. Med.121, 684–697 (1994). CASPubMed Google Scholar
Stanke-Labesque, F., Pofelski, J., Moreau-Gaudry, A., Bessard, G. & Bonaz, B. Urinary leukotriene E4 excretion: a biomarker of inflammatory bowel disease activity. Inflamm Bowel Dis.14, 769–774 (2008). PubMed Google Scholar
Bomalaski, J. S., Dundee, D., Brophy, L. & Clark, M. A. Leukotriene B4 modulates phospholipid methylation and chemotaxis in human polymorphonuclear leukocytes. J. Leukoc. Biol.47, 1–12 (1990). CASPubMed Google Scholar
Islam, S. A. et al. The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood107, 444–453 (2006). CASPubMedPubMed Central Google Scholar
Shin, E. H., Lee, H. Y. & Bae, Y. S. Leukotriene B4 stimulates human monocyte-derived dendritic cell chemotaxis. Biochem. Biophys. Res. Commun.348, 606–611 (2006). CASPubMed Google Scholar
Haribabu, B. et al. Targeted disruption of the leukotriene B4 receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J. Exp. Med.192, 433–438 (2000). CASPubMedPubMed Central Google Scholar
Woo, C. H. et al. Leukotriene B4 stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. J. Biol. Chem.277, 8572–8578 (2002). CAS Google Scholar
Del Prete, A. et al. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood109, 626–631 (2007). CASPubMedPubMed Central Google Scholar
Snijdewint, F. G., Kalinski, P., Wierenga, E. A., Bos, J. D. & Kapsenberg, M. L. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol.150, 5321–5329 (1993). CASPubMed Google Scholar
Huang, M. et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res.58, 1208–1216 (1998). CASPubMed Google Scholar
Stolina, M. et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol.164, 361–370 (2000). CASPubMed Google Scholar
Zeddou, M. et al. Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Biochem. Pharmacol.70, 714–724 (2005). CASPubMed Google Scholar
Baratelli, F. et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol.175, 1483–1490 (2005). CASPubMed Google Scholar
Ahmadi, M., Emery, D. C. & Morgan, D. J. Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res.68, 7520–7529 (2008). CASPubMedPubMed Central Google Scholar
von Bergwelt-Baildon, M. S. et al. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood108, 228–237 (2006). CASPubMed Google Scholar
Yang, L. et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J. Clin. Invest.111, 727–735 (2003). This study reported the firstin vivoevidence that PGE2is a mediator of cancer-associated immunodeficiency. CASPubMedPubMed Central Google Scholar
Goodwin, J. S. & Ceuppens, J. Regulation of the immune response by prostaglandins. J. Clin. Immunol.3, 295–315 (1983). CASPubMed Google Scholar
Sinha, P., Clements, V. K., Fulton, A. M. & Ostrand-Rosenberg, S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res.67, 4507–4513 (2007). CASPubMed Google Scholar
Wang, D. et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med.203, 941–951 (2006). CASPubMedPubMed Central Google Scholar
Battersby, S. et al. Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway. Hum. Reprod.22, 36–44 (2007). CASPubMed Google Scholar
Chang, S. H. et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc. Natl Acad. Sci. USA101, 591–596 (2004). CASPubMed Google Scholar
Spinella, F., Rosano, L., Di Castro, V., Natali, P. G. & Bagnato, A. Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J. Biol. Chem.279, 46700–46705 (2004). CASPubMed Google Scholar
Jain, S., Chakraborty, G., Raja, R., Kale, S. & Kundu, G. C. Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res.68, 7750–7759 (2008). CASPubMed Google Scholar
Ding, Y. B. et al. PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system. Exp. Oncol.27, 108–113 (2005). CASPubMed Google Scholar
Sales, K. J. et al. A novel angiogenic role for prostaglandin F2α-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res.65, 7707–7716 (2005). CASPubMedPubMed Central Google Scholar
Wallace, A. E. et al. Prostaglandin F2α-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Res.69, 5726–5733 (2009). CASPubMedPubMed Central Google Scholar
Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA103, 12493–12498 (2006). CASPubMedPubMed Central Google Scholar
Pradono, P. et al. Gene transfer of thromboxane A2 synthase and prostaglandin I2 synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res.62, 63–66 (2002). CASPubMed Google Scholar
Kamiyama, M. et al. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene25, 7019–7028 (2006). CASPubMed Google Scholar
Amano, H. et al. Host prostaglandin E2-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J. Exp. Med.197, 221–232 (2003). CASPubMedPubMed Central Google Scholar
Pai, R. et al. PGE2 stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem. Biophys. Res. Commun.286, 923–928 (2001). CASPubMed Google Scholar
Dormond, O., Bezzi, M., Mariotti, A. & Ruegg, C. Prostaglandin E2 promotes integrin alpha Vbeta 3-dependent endothelial cell adhesion, rac-activation, and spreading through cAMP/PKA-dependent signaling. J. Biol. Chem.277, 45838–45846 (2002). CASPubMed Google Scholar
Salcedo, R. et al. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood102, 1966–1977 (2003). CASPubMed Google Scholar
Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C. & Marnett, L. J. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res.59, 4574–4577 (1999). CASPubMed Google Scholar
Murata, T. et al. Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc. Natl Acad. Sci. USA105, 20009–20014 (2008). This was the first report to show that PGD2–DP signalling inhibits tumour-associated angiogenesis and tumour growthin vivo. CASPubMedPubMed Central Google Scholar
Kim, G. Y., Lee, J. W., Cho, S. H., Seo, J. M. & Kim, J. H. Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb. Vasc. Biol.29, 915–920 (2009). CASPubMed Google Scholar
Modat, G., Muller, A., Mary, A., Gregoire, C. & Bonne, C. Differential effects of leukotrienes B4 and C4 on bovine aortic endothelial cell proliferation in vitro. Prostaglandins33, 531–538 (1987). CASPubMed Google Scholar
Tsopanoglou, N. E., Pipili-Synetos, E. & Maragoudakis, M. E. Leukotrienes C4 and D4 promote angiogenesis via a receptor-mediated interaction. Eur. J. Pharmacol.258, 151–154 (1994). CASPubMed Google Scholar
Steiner, D. R., Gonzalez, N. C. & Wood, J. G. Leukotriene B4 promotes reactive oxidant generation and leukocyte adherence during acute hypoxia. J. Appl. Physiol.91, 1160–1167 (2001). CASPubMed Google Scholar
Abdel-Majid, R. M. & Marshall, J. S. Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J. Immunol.172, 1227–1236 (2004). CASPubMed Google Scholar
Nakayama, T., Mutsuga, N., Yao, L. & Tosato, G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J. Leukoc. Biol.79, 95–104 (2006). CASPubMed Google Scholar
Soria, G. & Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett.267, 271–285 (2008). CASPubMed Google Scholar
Salcedo, R. et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood96, 34–40 (2000). CASPubMed Google Scholar
Tanaka, S. et al. Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut55, 54–61 (2006). CASPubMedPubMed Central Google Scholar
Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res.67, 5064–5066 (2007). CASPubMed Google Scholar
Rosengren, S., Olofsson, A. M., von Andrian, U. H., Lundgren-Akerlund, E. & Arfors, K. E. Leukotriene B4-induced neutrophil-mediated endothelial leakage in vitro and in vivo. J. Appl. Physiol.71, 1322–1330 (1991). CASPubMed Google Scholar
Kanaoka, Y., Maekawa, A., Penrose, J. F., Austen, K. F. & Lam, B. K. Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J. Biol. Chem.276, 22608–22613 (2001). CASPubMed Google Scholar
Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med.356, 2131–2142 (2007). This paper reported the first clinical evidence that aspirin seems to reduce the risk of CRCs that overexpress COX2 but not the risk of CRCs with weak or absent expression of COX2. CASPubMed Google Scholar
Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA302, 649–658 (2009). This paper was the first to provide clinical evidence that aspirin can be used to treat advanced CRC. CASPubMedPubMed Central Google Scholar
Cuzick, J. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol.10, 501–507 (2009). CASPubMed Google Scholar
Fitzgerald, G. A. Coxibs and cardiovascular disease. N. Engl. J. Med.351, 1709–1711 (2004). CAS Google Scholar
Narasimha, A. et al. A novel anti-atherogenic role for COX-2 — potential mechanism for the cardiovascular side effects of COX-2 inhibitors. Prostaglandins Other Lipid Mediat.84, 24–33 (2007). CASPubMedPubMed Central Google Scholar
Piazuelo, E. et al. Effects of selective PGE2 receptor antagonists in esophageal adenocarcinoma cells derived from Barrett's esophagus. Prostaglandins Other Lipid Mediat.81, 150–161 (2006). CASPubMed Google Scholar
Rioux, N. & Castonguay, A. Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis19, 1393–1400 (1998). CASPubMed Google Scholar
Barry, M. et al. Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Ir. J. Med. Sci.178, 201–208 (2009). CASPubMed Google Scholar
Fegn, L. & Wang, Z. Topical chemoprevention of skin cancer in mice, using combined inhibitors of 5-lipoxygenase and cyclo-oxygenase-2. J. Laryngol. Otol.123, 880–884 (2009). CASPubMedPubMed Central Google Scholar
Ye, Y. N. et al. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis26, 827–834 (2005). CASPubMed Google Scholar
Chen, X. et al. Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clin. Cancer Res.10, 6703–6709 (2004). CASPubMed Google Scholar
Wenger, F. A. et al. Effects of Celebrex and Zyflo on liver metastasis and lipidperoxidation in pancreatic cancer in Syrian hamsters. Clin. Exp. Metastasis19, 681–687 (2002). CASPubMed Google Scholar
Hennig, R. et al. Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Lett.210, 41–46 (2004). CASPubMed Google Scholar
Adrian, T. E., Hennig, R., Friess, H. & Ding, X. The role of PPARγ receptors and leukotriene B4 receptors in mediating the effects of LY293111 in pancreatic cancer. PPAR Res. 27 Jan 2009 (doi:10.1155/2008/827096) Google Scholar
Gunning, W. T., Kramer, P. M., Steele, V. E. & Pereira, M. A. Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res.62, 4199–4201 (2002). CASPubMed Google Scholar
Monzon, F. A. et al. The role of KRAS mutation testing in the management of patients with metastatic colorectal cancer. Arch. Pathol. Lab. Med.133, 1600–1606 (2009). CASPubMed Google Scholar