Towards the use of cannabinoids as antitumour agents (original) (raw)
Gaoni, Y. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc.86, 1646–1647 (1964). ArticleCAS Google Scholar
Pertwee, R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol.153, 199–215 (2008). ArticleCASPubMed Google Scholar
Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science258, 1946–1949 (1992). ArticleCASPubMed Google Scholar
Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol.50, 83–90 (1995). ArticleCASPubMed Google Scholar
Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun.215, 89–97 (1995). ArticleCASPubMed Google Scholar
Pertwee, R. G. et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev.62, 588–631 (2010). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature346, 561–564 (1990). ArticleCASPubMed Google Scholar
Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature365, 61–65 (1993). ArticleCASPubMed Google Scholar
Fernandez-Ruiz, J. et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol. Sci.28, 39–45 (2007). ArticleCASPubMed Google Scholar
Guzman, M. et al. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer95, 197–203 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sarfaraz, S., Adhami, V. M., Syed, D. N., Afaq, F. & Mukhtar, H. Cannabinoids for cancer treatment: progress and promise. Cancer Res.68, 339–342 (2008). ArticleCASPubMed Google Scholar
Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Med.14, 923–930 (2008). ArticleCASPubMed Google Scholar
Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev.58, 389–462 (2006). ArticleCASPubMed Google Scholar
Guzman, M. Cannabinoids: potential anticancer agents. Nature Rev. Cancer3, 745–755 (2003). ArticleCAS Google Scholar
Cudaback, E., Marrs, W., Moeller, T. & Stella, N. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS ONE5, e8702 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hart, S., Fischer, O. M. & Ullrich, A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res.64, 1943–1950 (2004). ArticleCASPubMed Google Scholar
McKallip, R. J., Nagarkatti, M. & Nagarkatti, P. S. Δ9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol.174, 3281–3289 (2005). ArticleCASPubMed Google Scholar
Zhu, L. X. et al. Δ9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J. Immunol.165, 373–380 (2000). ArticleCASPubMed Google Scholar
Malfitano, A. M. et al. Update on the endocannabinoid system as an anticancer target. Expert Opin. Ther. Targets.15, 297–308 (2011). ArticleCASPubMed Google Scholar
Caffarel, M. M., Sarrio, D., Palacios, J., Guzman, M. & Sanchez, C. Δ9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res.66, 6615–6621 (2006). ArticleCASPubMed Google Scholar
Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res.61, 5784–5789 (2001). CASPubMed Google Scholar
Thors, L. et al. Fatty acid amide hydrolase in prostate cancer: association with disease severity and outcome, CB1 receptor expression and regulation by IL-4. PLoS ONE5, e12275 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Zheng, D. et al. The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development. Cancer Res.68, 3992–3998 (2008). ArticleCASPubMedPubMed Central Google Scholar
Joosten, M. et al. Leukemic predisposition of pSca-1/Cb2 transgenic mice. Exp. Hematol.30, 142–149 (2002). ArticleCASPubMed Google Scholar
Izzo, A. A. et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J. Mol. Med. (Berl.)86, 89–98 (2008). ArticleCAS Google Scholar
Blazquez, C. et al. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res.64, 5617–5623 (2004). ArticleCASPubMed Google Scholar
Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med.6, 313–319 (2000). ArticleCASPubMed Google Scholar
Gomez del Pulgar, T., Velasco, G., Sanchez, C., Haro, A. & Guzman, M. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem. J.363, 183–188 (2002). ArticleCASPubMedPubMed Central Google Scholar
Carracedo, A. et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell9, 301–312 (2006). ArticleCASPubMed Google Scholar
Encinar, J. A. et al. Human p8 is a HMG-I/Y-like protein with DNA binding activity enhanced by phosphorylation. J. Biol. Chem.276, 2742–2751 (2001). ArticleCASPubMed Google Scholar
Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem.74, 739–789 (2005). ArticleCASPubMed Google Scholar
Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol.2010, 930509 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Eisenberg-Lerner, A., Bialik, S., Simon, H. U. & Kimchi, A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ.16, 966–975 (2009). ArticleCASPubMed Google Scholar
Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest.119, 1359–1372 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vara, D. et al. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ.18, 1099–1111 (2011). ArticleCASPubMedPubMed Central Google Scholar
Carracedo, A. et al. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res.66, 6748–6755 (2006). ArticleCASPubMed Google Scholar
Blazquez, C. et al. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J.20, 2633–2635 (2006). ArticleCASPubMed Google Scholar
Sarfaraz, S., Afaq, F., Adhami, V. M., Malik, A. & Mukhtar, H. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J. Biol. Chem.281, 39480–39491 (2006). ArticleCASPubMed Google Scholar
Ligresti, A. et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther.318, 1375–1387 (2006). ArticleCASPubMed Google Scholar
Massi, P. et al. 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. J. Neurochem.104, 1091–1100 (2008). ArticleCASPubMed Google Scholar
Shrivastava, A., Kuzontkoski, P. M., Groopman, J. E. & Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther.10, 1161–1172 (2011). ArticleCASPubMed Google Scholar
Massi, P. et al. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cel. Mol. Life Sci.63, 2057–2066 (2006). ArticleCAS Google Scholar
Casanova, M. L. et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest.111, 43–50 (2003). ArticleCASPubMedPubMed Central Google Scholar
Blazquez, C. et al. Inhibition of tumor angiogenesis by cannabinoids. FASEB J.17, 529–531 (2003). ArticleCASPubMed Google Scholar
Portella, G. et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J.17, 1771–1773 (2003). ArticleCASPubMed Google Scholar
Pisanti, S. et al. Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. J. Cell Physiol.211, 495–503 (2007). ArticleCASPubMed Google Scholar
Blazquez, C. et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res.68, 1945–1952 (2008). ArticleCASPubMed Google Scholar
Grimaldi, C. et al. Anandamide inhibits adhesion and migration of breast cancer cells. Exp. Cell Res.312, 363–373 (2006). ArticleCASPubMed Google Scholar
Qamri, Z. et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol. Cancer Ther.8, 3117–3129 (2009). ArticleCASPubMedPubMed Central Google Scholar
Preet, A., Ganju, R. K. & Groopman, J. E. Δ9-tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene27, 339–346 (2008). ArticleCASPubMed Google Scholar
Ramer, R. & Hinz, B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst.100, 59–69 (2008). ArticleCASPubMed Google Scholar
McAllister, S. D., Christian, R. T., Horowitz, M. P., Garcia, A. & Desprez, P. Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther.6, 2921–2927 (2007). ArticleCASPubMed Google Scholar
McAllister, S. D. et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res. Treat.129, 37–47 (2011). ArticleCASPubMed Google Scholar
Galve-Roperh, I., Aguado, T., Palazuelos, J. & Guzman, M. Mechanisms of control of neuron survival by the endocannabinoid system. Curr. Pharm. Des.14, 2279–2288 (2008). ArticleCASPubMed Google Scholar
Chan, P. C., Sills, R. C., Braun, A. G., Haseman, J. K. & Bucher, J. R. Toxicity and carcinogenicity of Δ9-tetrahydrocannabinol in Fischer rats and B6C3F1 mice. Fundam. Appl. Toxicol.30, 109–117 (1996). ArticleCASPubMed Google Scholar
Lombard, C., Nagarkatti, M. & Nagarkatti, P. CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin. Immunol.122, 259–270 (2007). ArticleCASPubMed Google Scholar
Rieder, S. A., Chauhan, A., Singh, U., Nagarkatti, M. & Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology215, 598–605 (2010). ArticleCASPubMed Google Scholar
Lorente, M. et al. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ.18, 959–973 (2011). ArticleCASPubMedPubMed Central Google Scholar
Newton, C. A., Chou, P. J., Perkins, I. & Klein, T. W. CB1 and CB2 cannabinoid receptors mediate different aspects of Δ9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol.4, 92–102 (2009). ArticlePubMed Google Scholar
Lu, T., Newton, C., Perkins, I., Friedman, H. & Klein, T. W. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J. Pharmacol. Exp. Ther.319, 269–276 (2006). ArticleCASPubMed Google Scholar
Steffens, S. et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature434, 782–786 (2005). ArticleCASPubMed Google Scholar
Hegde, V. L., Nagarkatti, M. & Nagarkatti, P. S. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur. J. Immunol.40, 3358–3371 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, W. M., Fowler, D. W. & Dalgleish, A. G. Cannabis-derived substances in cancer therapy--an emerging anti-inflammatory role for the cannabinoids. Curr. Clin. Pharmacol.5, 281–287 (2010). ArticleCASPubMed Google Scholar
Hudson, B. D., Hebert, T. E. & Kelly, M. E. Ligand- and heterodimer-directed signaling of the CB1 cannabinoid receptor. Mol. Pharmacol.77, 1–9 (2010). ArticleCASPubMed Google Scholar
Dainese, E., Oddi, S. & Maccarrone, M. Interaction of endocannabinoid receptors with biological membranes. Curr. Med. Chem.17, 1487–1499 (2010). ArticleCASPubMed Google Scholar
Smith, T. H., Sim-Selley, L. J. & Selley, D. E. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br. J. Pharmacol.160, 454–466 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mirkin, B. L. et al. Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene24, 4965–4974 (2005). ArticleCASPubMed Google Scholar
Kadomatsu, K. The midkine family in cancer, inflammation and neural development. Nagoya J. Med. Sci.67, 71–82 (2005). CASPubMed Google Scholar
Palmer, R. H., Vernersson, E., Grabbe, C. & Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J.420, 345–361 (2009). ArticleCASPubMed Google Scholar
de Bono, J. S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature467, 543–549 (2010). ArticleCASPubMed Google Scholar
Grande, E., Bolos, M. V. & Arriola, E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol. Cancer Ther.10, 569–579 (2011). ArticleCASPubMed Google Scholar
Lorente, M. et al. Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis. Glia57, 1374–1385 (2009). ArticlePubMed Google Scholar
Torres, S. et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther.10, 90–103 (2011). ArticleCASPubMed Google Scholar
Donadelli, M. et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis.2, e152 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miyato, H. et al. Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. J. Surg. Res.155, 40–47 (2009). ArticleCASPubMed Google Scholar
Gustafsson, S. B., Lindgren, T., Jonsson, M. & Jacobsson, S. O. Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother. Pharmacol.63, 691–701 (2009). ArticleCASPubMed Google Scholar
Marcu, J. P. et al. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther.9, 180–189 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J.15, 2745–2747 (2001). ArticleCASPubMed Google Scholar
Herrera, B. et al. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp. Cell Res.312, 2121–2131 (2006). ArticleCASPubMed Google Scholar
Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science300, 1574–1577 (2003). ArticleCASPubMed Google Scholar
Ellert-Miklaszewska, A., Kaminska, B. & Konarska, L. Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal.17, 25–37 (2005). ArticleCASPubMed Google Scholar
Caffarel, M. M. et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene27, 5033–5044 (2008). ArticleCASPubMed Google Scholar
Lonardi, S., Tosoni, A. & Brandes, A. A. Adjuvant chemotherapy in the treatment of high grade gliomas. Cancer Treat. Rev.31, 79–89 (2005). ArticleCASPubMed Google Scholar
Nieder, C., Adam, M., Molls, M. & Grosu, A. L. Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit. Rev. Oncol. Hematol.60, 181–193 (2006). ArticlePubMed Google Scholar
Purow, B. & Schiff, D. Advances in the genetics of glioblastoma: are we reaching critical mass? Nature Rev. Neurol.5, 419–426 (2009). ArticleCAS Google Scholar
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005). ArticleCASPubMed Google Scholar
Oesch, S. et al. Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Mol. Cancer Ther.8, 1838–1845 (2009). ArticleCASPubMed Google Scholar
Gustafsson, K., Christensson, B., Sander, B. & Flygare, J. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol. Pharmacol.70, 1612–1620 (2006). ArticleCASPubMed Google Scholar
McKallip, R. J. et al. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood100, 627–634 (2002). ArticleCASPubMed Google Scholar
Jia, W. et al. Δ9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Mol. Cancer Res.4, 549–562 (2006). ArticleCASPubMed Google Scholar
Mimeault, M., Pommery, N., Wattez, N., Bailly, C. & Henichart, J. P. Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate56, 1–12 (2003). ArticleCASPubMed Google Scholar
Olea-Herrero, N., Vara, D., Malagarie-Cazenave, S. & Diaz-Laviada, I. Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2 . Br. J. Cancer101, 940–950 (2009). ArticleCASPubMedPubMed Central Google Scholar