Going viral with cancer immunotherapy (original) (raw)
Glenney, J. R. Jr., Zokas, L. & Kamps, M. P. Monoclonal antibodies to phosphotyrosine. J. Immunol. Methods109, 277–285 (1988). ArticleCASPubMed Google Scholar
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer12, 252–264 (2012). ArticleCAS Google Scholar
Kreiter, S., Castle, J. C., Tureci, O. & Sahin, U. Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology1, 768–769 (2012). ArticlePubMedPubMed Central Google Scholar
Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nature Biotech.30, 658–670 (2012). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther.15, 651–659 (2007). ArticleCASPubMed Google Scholar
Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther.4, 749–758 (2011). Google Scholar
Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell4, 263–275 (2003). ArticleCASPubMed Google Scholar
Breitbach, C. J. et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature477, 99–102 (2011). ArticleCASPubMed Google Scholar
Liu, T. C., Hwang, T., Park, B. H., Bell, J. & Kirn, D. H. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol. Ther.16, 1637–1642 (2008). ArticleCASPubMed Google Scholar
Breitbach, C. J. et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res.73, 1265–1275 (2013). ArticleCASPubMed Google Scholar
Breitbach, C. J. et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther.15, 1686–1693 (2007). ArticleCASPubMed Google Scholar
Liu, T. C., Galanis, E. & Kirn, D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature Clin. Pract. Oncol.4, 101–117 (2007). ArticleCAS Google Scholar
Miest, T. S. & Cattaneo, R. New viruses for cancer therapy: meeting clinical needs. Nature Rev. Microbiol.12, 23–34 (2013). ArticleCAS Google Scholar
Atherton, M. J. & Lichty, B. D. Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy5, 1191–1206 (2013). ArticleCASPubMed Google Scholar
Kaufman, H. L. & Bines, S. D. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol.6, 941–949 (2010). ArticleCASPubMed Google Scholar
Garber, K. China approves world's first oncolytic virus therapy for cancer treatment. J. Natl Cancer Inst.98, 298–300 (2006). ArticlePubMed Google Scholar
Senzer, N. N. et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol.27, 5763–5771 (2009). ArticleCASPubMed Google Scholar
Nemunaitis, J. et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther.8, 746–759 (2001). ArticleCASPubMed Google Scholar
Park, B. H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol.9, 533–542 (2008). ArticleCASPubMed Google Scholar
Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Med.19, 329–336 (2013). ArticleCASPubMed Google Scholar
Ingemar Andtbacka, R. H. et al. OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C & IV melanoma. J. Clin. Oncol.31, abstract LBA9008 (2013).
Harrington, K. J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res.16, 4005–4015 (2010). ArticleCASPubMed Google Scholar
Harrington, K. J. et al. Two-stage phase I dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers. Clin. Cancer Res.16, 3067–3077 (2010). ArticleCASPubMedPubMed Central Google Scholar
Heo, J. et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol. Ther.19, 1170–1179 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cerullo, V. et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol. Ther.19, 1737–1746 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Engl. J. Med.363, 411–422 (2010). ArticleCASPubMed Google Scholar
Small, E. J. et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol.24, 3089–3094 (2006). ArticleCASPubMed Google Scholar
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl. J. Med.363, 711–723 (2010). ArticleCASPubMed Google Scholar
Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science332, 600–603 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer3, 666–675 (2003). ArticleCAS Google Scholar
Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nature Rev. Cancer13, 525–541 (2013). ArticleCAS Google Scholar
Adair, R. A. et al. Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients. Sci. Transl. Med.4, 138ra77 (2012). PubMedPubMed Central Google Scholar
Kottke, T. et al. Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Mol. Ther.16, 1217–1226 (2008). ArticleCASPubMed Google Scholar
Diaz, R. M. et al. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res.67, 2840–2848 (2007). ArticleCASPubMed Google Scholar
Liu, B. L. et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther.10, 292–303 (2003). ArticleCASPubMed Google Scholar
Moehler, M. H. et al. Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum. Gene Ther.16, 996–1005 (2005). ArticleCASPubMed Google Scholar
Mastrangelo, M. J. et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther.6, 409–422 (1999). ArticleCASPubMed Google Scholar
Hwang, T. H. et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol. Ther.19, 1913–1922 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kim, M. K. et al. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci. Transl. Med.5, 185ra63 (2013). ArticleCASPubMed Google Scholar
Sukkurwala, A. Q. et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ.21, 59–68 (2014). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009). ArticleCASPubMed Google Scholar
Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest.122, 1615–1627 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, B. H. et al. Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS ONE7, e35812 (2012). ArticleCASPubMedPubMed Central Google Scholar
Huang, B., Sikorski, R., Kirn, D. H. & Thorne, S. H. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Ther.18, 164–172 (2011). ArticleCASPubMed Google Scholar
Miyamoto, S. et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res.72, 2609–2621 (2012). ArticleCASPubMed Google Scholar
Galivo, F. et al. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum. Gene Ther.21, 439–450 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schirrmacher, V., Griesbach, A. & Ahlert, T. Antitumor effects of Newcastle disease virus in vivo: local versus systemic effects. Int. J. Oncol.18, 945–952 (2001). CASPubMed Google Scholar
Diallo, J. S. et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol. Ther.18, 1123–1129 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, T. L. et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc. Natl Acad. Sci. USA105, 14981–14986 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jha, B. K., Dong, B., Nguyen, C. T., Polyakova, I. & Silverman, R. H. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol. Ther.21, 1749–1757 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bose, A. et al. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int. J. Cancer129, 2158–2170 (2011). ArticleCASPubMedPubMed Central Google Scholar
Beug, S. T. et al. Smac mimetics and innate immune stimuli synergize to promote tumor death. Nature Biotech.32, 182–190 (2014). ArticleCAS Google Scholar
Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res.12, 6737–6747 (2006). ArticleCASPubMed Google Scholar
Curran, M. A. & Allison, J. P. Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res.69, 7747–7755 (2009). ArticleCASPubMedPubMed Central Google Scholar
Epardaud, M. et al. Interleukin-15/interleukin-15Rα complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res.68, 2972–2983 (2008). ArticleCASPubMed Google Scholar
Liu, R. B. et al. IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc. Natl Acad. Sci. USA110, 8158–8163 (2013). ArticleCASPubMedPubMed Central Google Scholar
Onu, A., Pohl, T., Krause, H. & Bulfone-Paus, S. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J. Immunol.158, 255–262 (1997). CASPubMed Google Scholar
Yu, F. et al. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol. Ther.22, 102–111 (2014). ArticleCASPubMed Google Scholar
Amato, R. J. et al. Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase II trial. Clin. Cancer Res.14, 7504–7510 (2008). ArticleCASPubMed Google Scholar
Harrop, R. et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin. Cancer Res.12, 3416–3424 (2006). ArticleCASPubMed Google Scholar
Horig, H. et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol. Immunother.49, 504–514 (2000). ArticleCASPubMed Google Scholar
Jager, E. et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl Acad. Sci. USA103, 14453–14458 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kaufman, H. L. et al. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin. Cancer Res.14, 4843–4849 (2008). ArticleCASPubMed Google Scholar
Madan, R. A. et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol.13, 501–508 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morse, M. A. et al. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol. Immunother.62, 1293–1301 (2013). ArticleCASPubMedPubMed Central Google Scholar
Odunsi, K. et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc. Natl Acad. Sci. USA109, 5797–5802 (2012). ArticleCASPubMedPubMed Central Google Scholar
Harrop, R., John, J. & Carroll, M. W. Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev.58, 931–947 (2006). ArticleCASPubMed Google Scholar
Elzey, B. D., Siemens, D. R., Ratliff, T. L. & Lubaroff, D. M. Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int. J. Cancer94, 842–849 (2001). ArticleCASPubMed Google Scholar
Hodge, J. W., McLaughlin, J. P., Kantor, J. A. & Schlom, J. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine15, 759–768 (1997). ArticleCASPubMed Google Scholar
Hodge, J. W. et al. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res.63, 7942–7949 (2003). CASPubMed Google Scholar
Irvine, K. R. et al. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J. Natl Cancer Inst.89, 1595–1601 (1997). ArticleCASPubMed Google Scholar
Marshall, J. L. et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.18, 3964–3973 (2000). ArticleCASPubMed Google Scholar
Naslund, T. I. et al. Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J. Immunol.178, 6761–6769 (2007). ArticlePubMed Google Scholar
Vigil, A., Martinez, O., Chua, M. A. & Garcia-Sastre, A. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol. Ther.16, 1883–1890 (2008). ArticleCASPubMed Google Scholar
Pol, J. G. et al. Maraba virus as a potent oncolytic vaccine vector. Mol. Ther.22, 420–429 (2014). ArticleCASPubMed Google Scholar
Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med.6, 226ra32 (2014). ArticleCASPubMedPubMed Central Google Scholar
Puzanov, I. et al. Primary analysis of a phase 1b multicenter trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. J Clin. Oncol.32 (suppl; abstr 9029^) (2014). Article Google Scholar
Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Med.14, 1264–1270 (2008). ArticleCASPubMed Google Scholar
Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene30, 1147–1158 (2011). ArticleCASPubMed Google Scholar
Galluzzi, L. & Kroemer, G. Autophagy mediates the metabolic benefits of endurance training. Circ. Res.110, 1276–1278 (2012). ArticleCASPubMed Google Scholar
Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity38, 209–223 (2013). ArticleCASPubMed Google Scholar
Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Rev. Cancer12, 860–875 (2012). ArticleCAS Google Scholar
Kaufman, H. L. et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol.17, 718–730 (2010). ArticlePubMed Google Scholar
Kim, J. H. et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol. Ther.14, 361–370 (2006). ArticleCASPubMed Google Scholar
Lee, J. H. et al. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther.17, 73–79 (2010). ArticleCASPubMed Google Scholar
Cerullo, V. et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res.70, 4297–4309 (2010). ArticleCASPubMed Google Scholar
Chang, J. et al. A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol. Ther.8, 676–682 (2009). ArticleCASPubMed Google Scholar
Robinson, M. et al. Novel immunocompetent murine tumor model for evaluation of conditionally replication-competent (oncolytic) murine adenoviral vectors. J. Virol.83, 3450–3462 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vigil, A. et al. Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res.67, 8285–8292 (2007). ArticleCASPubMed Google Scholar
Grote, D., Cattaneo, R. & Fielding, A. K. Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res.63, 6463–6468 (2003). CASPubMed Google Scholar
Bergman, I., Griffin, J. A., Gao, Y. & Whitaker-Dowling, P. Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. Int. J. Cancer121, 425–430 (2007). ArticleCASPubMed Google Scholar
Bernt, K. M., Ni, S., Tieu, A. T. & Lieber, A. Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res.65, 4343–4352 (2005). ArticleCASPubMed Google Scholar
Ramakrishna, E. et al. Antitumoral immune response by recruitment and expansion of dendritic cells in tumors infected with telomerase-dependent oncolytic viruses. Cancer Res.69, 1448–1458 (2009). ArticleCASPubMed Google Scholar
Leveille, S., Goulet, M. L., Lichty, B. D. & Hiscott, J. Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. J. Virol.85, 12160–12169 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lapteva, N. et al. Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. J. Immunother.32, 145–156 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carew, J. F. et al. A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol. Ther.4, 250–256 (2001). ArticleCASPubMed Google Scholar
Zhao, H., Janke, M., Fournier, P. & Schirrmacher, V. Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Res.136, 75–80 (2008). ArticleCASPubMed Google Scholar
Post, D. E. et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res.67, 6872–6881 (2007). ArticleCASPubMedPubMed Central Google Scholar
Terada, K., Wakimoto, H., Tyminski, E., Chiocca, E. A. & Saeki, Y. Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Ther.13, 705–714 (2006). ArticleCASPubMed Google Scholar
Choi, I. K. et al. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther.18, 898–909 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. S. et al. Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin. Cancer Res.12, 5859–5868 (2006). ArticleCASPubMed Google Scholar
Derubertis, B. G. et al. Cytokine-secreting herpes viral mutants effectively treat tumor in a murine metastatic colorectal liver model by oncolytic and T-cell-dependent mechanisms. Cancer Gene Ther.14, 590–597 (2007). ArticleCASPubMed Google Scholar
Varghese, S. et al. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther.13, 253–265 (2006). ArticleCASPubMed Google Scholar
Shin, E. J. et al. Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope117, 210–214 (2007). ArticleCASPubMed Google Scholar
Gaston, D. C. et al. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS ONE8, e81768 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stephenson, K. B., Barra, N. G., Davies, E., Ashkar, A. A. & Lichty, B. D. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther.19, 238–246 (2012). ArticleCASPubMed Google Scholar
van Rikxoort, M. et al. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS ONE7, e36506 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fukuhara, H., Ino, Y., Kuroda, T., Martuza, R. L. & Todo, T. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res.65, 10663–10668 (2005). ArticleCASPubMed Google Scholar
Ino, Y., Saeki, Y., Fukuhara, H. & Todo, T. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin. Cancer Res.12, 643–652 (2006). ArticleCASPubMed Google Scholar
Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J. & Thorne, S. H. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med.4, e353 (2007). ArticleCASPubMedPubMed Central Google Scholar
Li, H., Peng, K. W., Dingli, D., Kratzke, R. A. & Russell, S. J. Oncolytic measles viruses encoding interferon β and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther.17, 550–558 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shashkova, E. V., Spencer, J. F., Wold, W. S. & Doronin, K. Targeting interferon-α increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol. Ther.15, 598–607 (2007). ArticleCASPubMed Google Scholar
Shashkova, E. V., Kuppuswamy, M. N., Wold, W. S. & Doronin, K. Anticancer activity of oncolytic adenovirus vector armed with IFN-α and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Ther.15, 61–72 (2008). ArticleCASPubMed Google Scholar
Willmon, C. L. et al. Expression of IFN-β enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Res.69, 7713–7720 (2009). ArticleCASPubMedPubMed Central Google Scholar
Su, C. et al. Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-γ gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol. Ther.13, 918–927 (2006). ArticleCASPubMed Google Scholar
Choi, K. J. et al. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther.13, 1010–1020 (2006). ArticleCASPubMed Google Scholar
Todo, T., Martuza, R. L., Dallman, M. J. & Rabkin, S. D. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res.61, 153–161 (2001). CASPubMed Google Scholar
Huang, J. H. et al. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol. Ther.18, 264–274 (2010). ArticleCASPubMed Google Scholar
Kim, H. S., Kim-Schulze, S., Kim, D. W. & Kaufman, H. L. Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing 4-1BB ligand. Cancer Res.69, 8516–8525 (2009). ArticleCASPubMed Google Scholar
Li, J. L. et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther.16, 376–382 (2009). ArticleCASPubMed Google Scholar
Yoo, J. Y. et al. Tumor suppression by apoptotic and anti-angiogenic effects of mortalin-targeting adeno-oncolytic virus. J. Gene Med.12, 586–595 (2010). ArticleCASPubMed Google Scholar
Hu, Z. B. et al. A simplified system for generating oncolytic adenovirus vector carrying one or two transgenes. Cancer Gene Ther.15, 173–182 (2008). ArticleCASPubMed Google Scholar