NF-κB in cancer: from innocent bystander to major culprit (original) (raw)
Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). CASPubMed Google Scholar
Gilmore, T. D. Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene18, 6925–6937 (1999). CASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCASPubMed Google Scholar
Li, Z.-W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for NF-κB activation and prevention of apoptosis. J. Exp. Med.189, 1839–1845 (1999). CASPubMedPubMed Central Google Scholar
Solan, N. J., Miyoshi, H., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem.277, 1405–1418 (2002). CASPubMed Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000).Shows how IKKα activates a second NF-κB pathway by NF-κB2 processing from p100 to p52 in response to NIK stimulation — a function that is not provided by IKKβ. CASPubMed Google Scholar
Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NF-κB2/p100 in T cells: evidence for the involvement of IKKα. Oncogene20, 6805–6815 (2001). CAS Google Scholar
Mosialos, G. The role of Rel/NF-κB proteins in viral oncogenesis and the regulation of viral transcription. Semin. Cancer Biol.8, 121–129 (1997). CASPubMed Google Scholar
Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G. & Baldwin, A. S. Jr., NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol.19, 5785–5799 (1999). CASPubMedPubMed Central Google Scholar
Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol.19, 2690–2698 (1999). CASPubMedPubMed Central Google Scholar
Cao, Y. et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell107, 763–775 (2001).Reports that IKKα kinase activity is required for mammary-gland development during pregnancy, and it is an essential mediator for cyclin D1 induction by NF-κB in response to pregnancy signals. CASPubMed Google Scholar
Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science274, 782–784 (1996). CASPubMed Google Scholar
Liu, Z.-G., Hu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell87, 565–576 (1996). CASPubMed Google Scholar
Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNFα-induced apoptosis by NF-κB. Science274, 787–789 (1996). ArticleCASPubMed Google Scholar
Wang, C.-Y., Mayo, M. W. & Baldwin, A. S. Jr., TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science274, 784–787 (1996). CASPubMed Google Scholar
Karin, M. & Lin, A. NF-κB at the crossroad of Life and Death. Nature Immunol.3, 221–227 (2002). CAS Google Scholar
Wang, C. Y., Cusack, J. C. Jr, Liu, R. & Baldwin, A. S. Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Med.5, 412–417 (1999).NF-κB activation during cancer therapy is the principle mechanism of tumour chemoresistance. This article shows that inhibition of NF-κB sensitizes chemoresistant tumours to apoptosis. PubMed Google Scholar
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). CASPubMed Google Scholar
Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell Biol.19, 3485–3495 (1999). CASPubMedPubMed Central Google Scholar
Koch, A. E. et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science258, 1798–1801 (1992). CASPubMed Google Scholar
Takeshita, H. et al. Matrix metalloproteinase 9 expression is induced by Epstein–Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J. Virol.73, 5548–5555 (1999). CASPubMedPubMed Central Google Scholar
Wang, W., Abbruzzese, J. L., Evans, D. B. & Chiao, P. J. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene18, 4554–4563 (1999). CASPubMed Google Scholar
Bond, M., Fabunmi, R. P., Baker, A. H. & Newby, A. C. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett.435, 29–34 (1998). CASPubMed Google Scholar
Huang, S., Robinson, J. B., Deguzman, A., Bucana, C. D. & Fidler, I. J. Blockade of NF-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Cancer Res.60, 5334–5339 (2000). CASPubMed Google Scholar
Houldsworth, J. et al. REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood87, 25–29 (1996). CASPubMed Google Scholar
Lu, D. et al. Alterations at the rel locus in human lymphoma. Oncogene6, 1235–1241 (1991). CASPubMed Google Scholar
Joos, S. et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood87, 1571–1578 (1996). CASPubMed Google Scholar
Kabrun, N., Bumstead, N., Hayman, M. J. & Enrietto, P. J. Characterization of a novel promoter insertion in the c-Rel locus. Mol. Cell Biol.10, 4788–4794 (1990). CASPubMedPubMed Central Google Scholar
Gilmore, T. D., Cormier, C., Jean-Jacques, J. & Gapuzan, M. E. Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene20, 7098–7103 (2001). CASPubMed Google Scholar
Trecca, D. et al. Identification of a tumor-associated mutant form of the NF-κB RelA gene with reduced DNA-binding and transactivating activities. Oncogene14, 791–799 (1997). CASPubMed Google Scholar
Neri, A. et al. B-cell lymphoma-associated chromosomal translocation involves candidate oncogene Lyt-10, homologous to NF-κB p50. Cell67, 1075–1087 (1991).Shows that p50 homologous protein LYT10 is associated with chromosomal translocation in B-cell lymphoma — the first evidence that NF-κB family members have oncogenic potential. CASPubMed Google Scholar
Neri, A. et al. Molecular analysis of cutaneous B- and T-cell lymphomas. Blood86, 3160–3172 (1995). CASPubMed Google Scholar
Migliazza, A. et al. Heterogeneous chromosomal aberrations generate 3′ truncations of the NFKB2/Lyt-10 gene in lymphoid malignancies. Blood84, 3850–3860 (1994). CASPubMed Google Scholar
Ishikawa, H., Carrasco, D., Claudio, E., Ryseck, R.-P. & Bravo, R. Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-κB2. J. Exp. Med.186, 999–1014 (1997). CASPubMedPubMed Central Google Scholar
Ohno, H., Takimoto, G. & McKeithan, T. W. The candidate proto-oncogene Bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell60, 991–997 (1990). CASPubMed Google Scholar
Dechend, R. et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene18, 3316–3323 (1999). CASPubMed Google Scholar
Caamano, J. H., Perez, P., Lira, S. A. & Bravo, R. Constitutive expression of Bcl-3 in thymocytes increases the DNA binding of NF-κB1 (p50) homodimers in vivo. Mol. Cell Biol.16, 1342–1348 (1996). CASPubMedPubMed Central Google Scholar
Ong, S. T. et al. Lymphadenopathy, splenomegaly, and altered immunoglobulin production in Bcl3 transgenic mice. Oncogene16, 2333–2343 (1998). CASPubMed Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000).Explains how diffuse large B-cell lymphoma (DLBCL) can be classified into two types on the basis of gene-expression profile, germinal-center-like DLBCL and activated B-cell-like DLBCL. CASPubMed Google Scholar
Yamaoka, S. et al. Constitutive activation of NF-κB is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J.15, 873–887 (1996). CASPubMedPubMed Central Google Scholar
Knecht, H., Berger, C., Rothenberger, S., Odermatt, B. F. & Brousset, P. The role of Epstein–Barr virus in neoplastic transformation. Oncology60, 289–302 (2001). CASPubMed Google Scholar
Reuther, J. Y., Reuther, G. W., Cortez, D., Pendergast, A. M. & Baldwin, A. S. Jr., A requirement for NF-κB activation in Bcr–Abl-mediated transformation. Genes Dev.12, 968–981 (1998). CASPubMedPubMed Central Google Scholar
Madry, C. et al. The characterization of murine Bcma gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int. Immunol.10, 1693–1702 (1998). CASPubMed Google Scholar
Furman, R. R., Asgary, Z., Mascarenhas, J. O., Liou, H. C. & Schattner, E. J. Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J. Immunol.164, 2200–2206 (2000). CASPubMed Google Scholar
Zucca, E., Roggero, E. & Pileri, S. B-cell lymphoma of MALT type: a review with special emphasis on diagnostic and management problems of low-grade gastric tumours. Br. J. Haematol.100, 3–14 (1998). CASPubMed Google Scholar
Willis, T. G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell96, 35–45 (1999). CASPubMed Google Scholar
Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell104, 33–42 (2001). CASPubMed Google Scholar
Akagi, T. et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene18, 5785–5794 (1999). CASPubMed Google Scholar
Lucas, P. C. et al. BCL10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κB signalling pathway. J. Biol. Chem. 276, 19012–19019 (2001). CASPubMed Google Scholar
Krappmann, D. et al. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed–Sternberg cells. Oncogene18, 943–953 (1999). CASPubMed Google Scholar
Bargou, R. C. et al. Constitutive NF-κB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J. Clin. Invest.100, 2961–2969 (1997). CASPubMedPubMed Central Google Scholar
Cahir-McFarland, E. D., Davidson, D. M., Schauer, S. L., Duong, J. & Kieff, E. NF-κB inhibition causes spontaneous apoptosis in Epstein–Barr virus-transformed lymphoblastoid cells. Proc. Natl Acad. Sci. USA97, 6055–6060 (2000). CASPubMedPubMed Central Google Scholar
Keller, S. A., Schattner, E. J. & Cesarman, E. Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood96, 2537–2542 (2000). CASPubMed Google Scholar
Cogswell, P. C., Guttridge, D. C., Funkhouser, W. K. & Baldwin, A. S. Jr. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for BCL3. Oncogene19, 1123–1131 (2000). CASPubMed Google Scholar
Sovak, M. A. et al. Aberrant NF-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest.100, 2952–2960 (1997). CASPubMedPubMed Central Google Scholar
Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, J. R. J. & Sledge, J. G. W. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell Biol.17, 3629–3639 (1997). CASPubMedPubMed Central Google Scholar
Kim, D. W. et al. Activation of NF-κB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis21, 871–879 (2000). PubMed Google Scholar
Dejardin, E. et al. Highly expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene11, 1835–1841 (1995). CASPubMed Google Scholar
Pianetti, S., Arsura, M., Romieu-Mourez, R., Coffey, R. J. & Sonenshein, G. E. Her2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκBα that can be inhibited by the tumor suppressor PTEN. Oncogene20, 1287–1299 (2001). CASPubMed Google Scholar
Zhou, B. P. et al. HER2/neu blocks tumor necrosis factor-induced apoptosis via the AKT/NF-κB pathway. J. Biol. Chem.275, 8027–8031 (2000). CASPubMed Google Scholar
Finco, T. S. et al. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem.272, 24113–24116 (1997). CASPubMed Google Scholar
Hennighausen, L. & Robinson, G. W. Signaling pathways in mammary gland development. Dev. Cell1, 467–475 (2001). CASPubMed Google Scholar
Clarkson, R. W. et al. NF-κB inhibits apoptosis in murine mammary epithelia. J. Biol. Chem.275, 12737–12742 (2000). CASPubMed Google Scholar
Fata, J. E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell103, 41–50 (2000).Shows that TNF family member RANKL is required for mammary-gland development during pregnancy, and the receptor for RANKL, RANK, phenocopies the defect. CASPubMed Google Scholar
Fantl, V., Stamp, G., Andrews, A., Rosewell, I. & Dickson, C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev.9, 2364–2372 (1995). CASPubMed Google Scholar
Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell82, 621–630 (1995). CASPubMed Google Scholar
Albanese, C. et al. Transforming p21Ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem.270, 23589–23597 (1995). CASPubMed Google Scholar
Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature411, 1017–1021 (2001).The RAS and NEU oncogenes depend on cyclin D1 to transform mammary epithelia, whereas MYC and WNT1 oncogenes are independent of it. CASPubMed Google Scholar
Romieu-Mourez, R. et al. Roles of IKK kinases and protein kinase CK2 in activation of NF-κB in breast cancer. Cancer Res.61, 3810–3818 (2001). CASPubMed Google Scholar
Biswas, D. K. et al. The nuclear factor κ-B (NF-κB): a potential therapeutic target for estrogen receptor negative breast cancers. Proc. Natl Acad. Sci. USA98, 10386–10391 (2001). CASPubMedPubMed Central Google Scholar
Peek, R. M. J. & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer2, 28–37 (2002). CAS Google Scholar
El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature404, 398–402 (2000). CASPubMed Google Scholar
Keates, S., Hitti, Y. S., Upton, M. & Kelly, C. P. Helicobacter pylori infection activates NF-κB in gastric epithelial cells. Gastroenterology113, 1099–1109 (1997). CASPubMed Google Scholar
Kim, H., Lim, J. W. & Kim, K. H. _Helicobacter pylori_-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: mediation by NF-κB. Scand. J. Gastroenterol.36, 706–716 (2001). CASPubMed Google Scholar
Barnes, P. J. & Karin, M. NF-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med.336, 1066–1071 (1997). CASPubMed Google Scholar
Lind, D. S. et al. NF-κB is upregulated in colorectal cancer. Surgery130, 363–369 (2001). CASPubMed Google Scholar
Hardwick, J. C., van den Brink, G. R., Offerhaus, G. J., van Deventer, S. J. & Peppelenbosch, M. P. NF-κB, p38 MAPK and JNK are highly expressed and active in the stroma of human colonic adenomatous polyps. Oncogene20, 819–827 (2001). CASPubMed Google Scholar
Rustgi, A. K. Hereditary gastrointestinal polyposis and nonpolyposis syndromes. N. Engl. J. Med.331, 1694–1702 (1994). CASPubMed Google Scholar
Chung, D. C. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology119, 854–865 (2000). CASPubMed Google Scholar
Neurath, M. F., Pettersson, S., Meyer zum Buschenfelde, K. H. & Strober, W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nature Med.2, 998–1004 (1996).NF-κB is activated in a mouse model of human Crohn's disease. Blocking p65 abrogates the signs of colitis. CASPubMed Google Scholar
Rogler, G. et al. NF-κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology115, 357–369 (1998). CASPubMed Google Scholar
Ekbom, A., Helmick, C., Zack, M. & Adami, H. O. Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. Lancet336, 357–359 (1990). CASPubMed Google Scholar
Kühn, R., Lohler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 203–205 (1993). Google Scholar
Wahl, C., Liptay, S., Adler, G. & Schmid, R. M. Sulfasalazine: a potent and specific inhibitor of NF-κB. J. Clin. Invest.101, 1163–1174 (1998). CASPubMedPubMed Central Google Scholar
Weber, C. K., Liptay, S., Wirth, T., Adler, G. & Schmid, R. M. Suppression of NF-κB activity by sulfasalazine is mediated by direct inhibition of IκB kinases α and β. Gastroenterology119, 1209–1218 (2000). CASPubMed Google Scholar
Egan, L. J. et al. Inhibition of interleukin-1-stimulated NF-κB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J. Biol. Chem.274, 26448–26453 (1999). CASPubMed Google Scholar
Majumdar, S. & Aggarwal, B. B. Methotrexate suppresses NF-κB activation through inhibition of IκBα phosphorylation and degradation. J. Immunol.167, 2911–2920 (2001). CASPubMed Google Scholar
Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology107, 1183–1188 (1994). CASPubMed Google Scholar
Williams, C. S. et al. Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology111, 1134–1140 (1996). CASPubMed Google Scholar
Taketo, M. M. COX-2 and colon cancer. Inflamm. Res.47, S112–S116 (1998). CASPubMed Google Scholar
Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell87, 803–809 (1996). CASPubMed Google Scholar
Giovannucci, E. et al. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann. Intern. Med.121, 241–246 (1994). CASPubMed Google Scholar
Thun, M. J., Namboodiri, M. M. & Heath, C. W. J. Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med.325, 1593–1596 (1991).Frequent aspirin use decreases death rates from colon cancer. CASPubMed Google Scholar
Rao, C. V., Rivenson, A., Simi, B. & Reddy, B. S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res.55, 259–266 (1995). CASPubMed Google Scholar
Boolbol, S. K. et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res.56, 2556–2560 (1996). CASPubMed Google Scholar
Farrow, D. C. et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol. Biomarkers Prev.7, 97–102 (1998). CASPubMed Google Scholar
Zaridze, D., Borisova, E., Maximovitch, D. & Chkhikvadze, V. Aspirin protects against gastric cancer: results of a case-control study from Moscow, Russia. Int. J. Cancer82, 473–476 (1999). CASPubMed Google Scholar
Yin, M. J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature396, 77–80 (1998).Aspirin and sodium salicylate specifically inhibit IKKβ activity — the first evidence that IKK is the direct target of anti-inflammatory agents. CASPubMed Google Scholar
Yamamoto, Y., Yin, M. J., Lin, K. M. & Gaynor, R. B. Sulindac inhibits activation of the NF-κB pathway. J. Biol. Chem.274, 27307–27314 (1999). CASPubMed Google Scholar
Plummer, S. M. et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene18, 6013–6020 (1999). CASPubMed Google Scholar
Pereira, M. A. et al. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis17, 1305–1311 (1996). CASPubMed Google Scholar
Hanif, R. et al. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem. Pharmacol.52, 237–245 (1996). CASPubMed Google Scholar
Greenlee, R. T., Murray, T., Bolden, S. & Wingo, P. A. Cancer statistics, 2000. CA Cancer J. Clin.50, 7–33 (2000). CASPubMed Google Scholar