The role of p53 in determining sensitivity to radiotherapy (original) (raw)
Santana, P. et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell86, 189–199 (1996). CASPubMed Google Scholar
Fowler, J. F. Biological factors influencing optimum fractionation in radiation therapy. Acta Oncol.40, 712–717 (2001). CASPubMed Google Scholar
Wahl, G. M. & Carr, A. M. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol.3, E277–E286 (2001). CASPubMed Google Scholar
Lowndes, N. F. & Murguia, J. R. Sensing and responding to DNA damage. Curr. Opin. Genet. Dev.10, 17–25 (2000). CASPubMed Google Scholar
Neta, R., Oppenheim, J. J. & Douches, S. D. Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J. Immunol.140, 108–111 (1988). CASPubMed Google Scholar
Kemp, C. J., Sun, S. & Gurley, K. E. p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. Cancer Res.61, 327–332 (2001). Shows that the experimental mouse tumours that respond to cancer treatment by apoptosis originate from apoptosis-prone tissues. CASPubMed Google Scholar
Smith, M. L. p53 regulation of DNA excision repair pathways. Mutagenesis17, 149–156 (2002). CASPubMed Google Scholar
Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene18, 7883–7899 (1999). CASPubMed Google Scholar
Lowe, S. W. & Lin, A. W. Apoptosis in cancer. Carcinogenesis21, 485–495 (2000). CASPubMed Google Scholar
Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev.10, 1054–1072 (1996). CASPubMed Google Scholar
el-Deiry, W. S. Regulation of p53 downstream genes. Semin. Cancer Biol.8, 345–357 (1998). CASPubMed Google Scholar
Offer, H. et al. The onset of p53-dependent DNA repair or apoptosis is determined by the level of accumulated damaged DNA. Carcinogenesis23, 1025–1032 (2002). CASPubMed Google Scholar
Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med.6, 1029–1035 (2000). CASPubMed Google Scholar
Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell8, 781–794 (2001). CASPubMed Google Scholar
Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell102, 849–862 (2000). CASPubMed Google Scholar
Khanna, K. K. et al. Cellular Responses to DNA Damage and the Human Chromosome Instability Syndromes (Humana Press, San Diego, 1998). Google Scholar
Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet.31, 635–662 (1997). CASPubMed Google Scholar
Auerbach, A. D. & Verlander, P. C. Disorders of DNA replication and repair. Curr. Opin. Pediatr.9, 600–616 (1997). CASPubMed Google Scholar
Denekamp, J. Cell kinetics and radiation biology. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.49, 357–380 (1986). CASPubMed Google Scholar
Sinclair, W. K. in Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy. BNL Reports 50203 (C-57), 97–107 (1969). Google Scholar
Sinclair, W. K. _N_-ethylmaleimide and the cyclic response to X-rays of synchronous Chinese hamster cells. Radiat. Res.55, 41–57 (1973). CASPubMed Google Scholar
Komarova, E. A. et al. Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53. Oncogene17, 1089–1096 (1998). CASPubMed Google Scholar
Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J.21, 5195–5205 (2002). CASPubMedPubMed Central Google Scholar
Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest.104, 263–269 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hawkins, D. S., Demers, G. W. & Galloway, D. A. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res.56, 892–898 (1996). Inactivation of p53 might cause cell sensitization to treatment with anticancer agents. CASPubMed Google Scholar
Palacios, C., Gutierrez del Arroyo, A., Silva, A. & Collins, M. K. The role of p53 in death of IL-3-dependent cells in response to cytotoxic drugs. Oncogene19, 3556–3559 (2000). CASPubMed Google Scholar
Offer, H. et al. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res.61, 88–96 (2001). CASPubMed Google Scholar
Pardo, F. S. et al. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat. Res.140, 180–185 (1994). CASPubMed Google Scholar
Wang, L. et al. Gamma-ray-induced cell killing and chromosome abnormalities in the bone marrow of p53-deficient mice. Radiat. Res.146, 259–266 (1996). CASPubMed Google Scholar
DiBiase, S. J., Guan, J., Curran, W. J., Jr & Iliakis, G. Repair of DNA double-strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int. J. Radiat. Oncol. Biol. Phys.45, 743–751 (1999). CASPubMed Google Scholar
Gudkov, A. V. Converting p53 from a killer into a healer. Nature Med.8, 1196–1198 (2002). CASPubMed Google Scholar
Seo, Y. R., Kelley, M. & Smith, M. L. Selenomethionine regulation of p53 by a ref-1-dependent redox mechanism. Proc. Natl Acad. Sci. USA99, 13969–13971 (2002). Google Scholar
Schultheiss, T. E., Kun, L. E., Ang, K. K. & Stephens, L. C. Radiation response of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys.31, 1093–1112 (1995). CASPubMed Google Scholar
Chang, B. D. et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res.59, 3761–3767 (1999). CASPubMed Google Scholar
Chang, B. D. et al. p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene19, 2165–2170 (2000). CASPubMed Google Scholar
Macip, S. et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J.21, 2180–2188 (2002). References 37–39 show that senescence-like permanent growth arrest can be an important type of tumour-cell response to treatment with DNA-damaging agents. CASPubMedPubMed Central Google Scholar
Wang, J. Y., Naderi, S. & Chen, T. T. Role of retinoblastoma tumor suppressor protein in DNA damage response. Acta Oncol.40, 689–695 (2001). The role of RB is essential for the establishment of irreversible growth arrest in response to IR: inactivation of RB allows the cell to resume proliferation after prolonged p53-dependent growth arrest following severe DNA damage. CASPubMed Google Scholar
Song, S. & Lambert, P. F. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am. J. Pathol.155, 1121–1127 (1999). CASPubMedPubMed Central Google Scholar
Komarova, E. A. et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J.16, 1391–1400 (1997). CASPubMedPubMed Central Google Scholar
Komarova, E. A., Christov, K., Faerman, A. I. & Gudkov, A. V. Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene19, 3791–3798 (2000). CASPubMed Google Scholar
Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature362, 847–849 (1993). CASPubMed Google Scholar
MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene13, 2575–2587 (1996). CASPubMed Google Scholar
Westphal, C. H. et al. Atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genet.16, 397–401 (1997). References 41–46 illustrate the role of p53-dependent apoptosis in normal tissue damage by IR, indicating that p53 might be a determinant of the side effects of cancer treatment. CASPubMed Google Scholar
Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science285, 1733–1737 (1999). Identification (by chemical library screening) andin vivoandin vitrotesting of a p53 inhibitor as an approach to reduce IR-induced tissue damage. CASPubMed Google Scholar
Hall, P. A., McKee, P. H., Menage, H. D., Dover, R. & Lane, D. P. High levels of p53 protein in UV-irradiated normal human skin. Oncogene8, 203–207 (1993). CASPubMed Google Scholar
Campbell, C., Quinn, A. G., Angus, B., Farr, P. M. & Rees, J. L. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res.53, 2697–2699 (1993). CASPubMed Google Scholar
Merritt, A. J. et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res.54, 614–617 (1994). CASPubMed Google Scholar
Clarke, A. R., Gledhill, S., Hooper, M. L., Bird, C. C. & Wyllie, A. H. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene9, 1767–1773 (1994). References 50 and 51 describe the p53 dependence of IR-induced damage to the epithelium of the small intestine. CASPubMed Google Scholar
Midgley, C. A. et al. Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. J. Cell Sci.108, 1843–1848 (1995). CASPubMed Google Scholar
Rogel, A., Popliker, M., Webb, C. G. & Oren, M. p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol. Cell. Biol.5, 2851–2855 (1985). CASPubMedPubMed Central Google Scholar
Burns, T. F., Bernhard, E. J. & El-Deiry, W. S. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene20, 4601–4612 (2001). CASPubMed Google Scholar
Haks, M. C., Krimpenfort, P., van den Brakel, J. H. & Kruisbeek, A. M. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity11, 91–101 (1999). CASPubMed Google Scholar
Guidos, C. J. et al. V(D)J recombination activates a p53-dependent DNA damage checkpoint in SCID lymphocyte precursors. Genes Dev.10, 2038–2054 (1996). CASPubMed Google Scholar
Newmeyer, D. D. & Green, D. R. Surviving the cytochrome seas. Neuron21, 653–655 (1998). CASPubMed Google Scholar
Li, F. et al. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J. Biol. Chem.272, 30299–30305 (1997). CASPubMed Google Scholar
Deshmukh, M. & Johnson, E. M. Jr. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron21, 695–705 (1998). CASPubMed Google Scholar
Westphal, C. H. et al. Loss of Atm radiosensitizes multiple p53 null tissues. Cancer Res.58, 5637–5639 (1998). CASPubMed Google Scholar
Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science293, 293–297 (2001). Tissue failure in response to IR can result from the selective damage of the most sensitive tissue component (in this case, the endothelium), leading to a chain reaction of pathological consequences. CASPubMed Google Scholar
Chow, B. M., Li, Y. Q. & Wong, C. S. Radiation-induced apoptosis in the adult central nervous system is p53- dependent. Cell Death Differ.7, 712–720 (2000). CASPubMed Google Scholar
Weichselbaum, R. R., Epstein, J. & Little, J. B. In vitro radiosensitivity of human dipliod fibroblasts derived from patients with unusual clinical responses to radiation. Radiology121, 479–482 (1976). CASPubMed Google Scholar
Barcellos-Hoff, M. H. Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res.53, 3880–3886 (1993). CASPubMed Google Scholar
Flanders, K. C. et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am. J. Pathol.160, 1057–1068 (2002). CASPubMedPubMed Central Google Scholar
Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002). CASPubMed Google Scholar
Schmitt, C. A. & Lowe, S. W. Bcl-2 mediates chemoresistance in matched pairs of primary E(mu)-myc lymphomas in vivo. Blood Cells Mol. Dis.27, 206–216 (2001). CASPubMed Google Scholar
Cordon-Cardo, C., Dalbagni, G., Sarkis, A. S. & Reuter, V. E. Genetic alterations associated with bladder cancer. Important Adv. Oncol.[vol?] 71–83 (1994).
Falette, N. et al. Prognostic value of p53 gene mutations in a large series of node-negative breast cancer patients. Cancer Res.58, 1451–1455 (1998). CASPubMed Google Scholar
Molina, R. et al. p53 oncoprotein as a prognostic indicator in patients with breast cancer. Anticancer Res.18, 507–511 (1998). CASPubMed Google Scholar
Brown, J. M. & Wouters, B. G. Apoptosis: mediator or mode of cell killing by anticancer agents? Drug Resist. Update4, 135–136 (2001). CAS Google Scholar
Nieder, C., Petersen, S., Petersen, C. & Thames, H. D. The challenge of p53 as prognostic and predictive factor in gliomas. Cancer Treat. Rev.26, 67–73 (2000). CASPubMed Google Scholar
Sierra, A. et al. Bcl-2 with loss of apoptosis allows accumulation of genetic alterations: a pathway to metastatic progression in human breast cancer. Int. J. Cancer89, 142–147 (2000). CASPubMed Google Scholar
Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J.17, 2215–2223 (1998). CASPubMedPubMed Central Google Scholar
Beere, H. M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biol.2, 469–475 (2000). CASPubMed Google Scholar
Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science266, 807–810 (1994). This paper had a very strong impact in the field by establishing the concept of p53-dependent apoptosis as the mechanism of treatment sensitivity of tumours. CASPubMed Google Scholar
Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer1, 222–231 (2001). CAS Google Scholar
Roninson, I. B., Broude, E. V. & Chang, B. D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Update4, 303–313 (2001). CAS Google Scholar
Hendry, J. H. & West, C. M. Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int. J. Radiat. Biol.71, 709–719 (1997). CASPubMed Google Scholar
Ianzini, F. & Mackey, M. A. Delayed DNA damage associated with mitotic catastrophe following X-irradiation of HeLa S3 cells. Mutagenesis13, 337–344 (1998). CASPubMed Google Scholar
Abend, M., Gilbertz, K. P., Rhein, A. & van Beuningen, D. Early and late G2 arrest of cells undergoing radiation-induced apoptosis or micronucleation. Cell Prolif.29, 101–113 (1996). CASPubMed Google Scholar
Dini, L., Coppola, S., Ruzittu, M. T. & Ghibelli, L. Multiple pathways for apoptotic nuclear fragmentation. Exp. Cell Res.223, 340–347 (1996). CASPubMed Google Scholar
Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell109, 335–346 (2002). Blocking the apoptotic programme in tumours of immunocyte origin causes a switch to an alternative type of p53-mediated response to treatmentin vivo— senescence-like permanent arrest. CASPubMed Google Scholar
Slichenmyer, W. J., Nelson, W. G., Slebos, R. J. & Kastan, M. B. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res.53, 4164–4168 (1993). CASPubMed Google Scholar
Brachman, D. G. et al. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res.53, 3667–3669 (1993). References 84 and 85 show that wild-type p53 in the tumour is not necessarily associated with higher sensitivity to treatment. CASPubMed Google Scholar
Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature379, 88–91 (1996). CASPubMed Google Scholar
Gurova, K. V. et al. Apoptosis inhibitor as a suppressor of tumor progression: expression of Bcl-2 eliminates selective advantages for p53-deficient cells in the tumor. Cancer Biol. Ther.1, 39–44; discussion 45–46 (2002). CASPubMed Google Scholar
Gurova, K. & Gudkov, A. V. Paradoxical role of apoptosis in cancer progression. J. Cell Biochem.88, 128–137 (2003). CASPubMed Google Scholar
Komarova, E. A. & Gudkov, A. V. Could p53 be a target for therapeutic suppression? Semin. Cancer Biol.8, 389–400 (1998). CASPubMed Google Scholar
Funk, J. O., Samuel, T. & Weber, H. O. in Cell Cycle Checkpoints and Cancer (ed. Blagosklonny, M. V.) 64–77 (Eurekah, Austin, Texas, 2001). Google Scholar
Khanna, K. K., Lavin, M. F., Jackson, S. P. & Mulhern, T. D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ.8, 1052–1065 (2001). CASPubMed Google Scholar
Tuteja, N. & Tuteja, R. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit. Rev. Biochem. Mol. Biol.36, 261–290 (2001). CASPubMed Google Scholar
Rosen, E. M., Fan, S., Rockwell, S. & Goldberg, I. D. The molecular and cellular basis of radiosensitivity: implications for understanding how normal tissues and tumors respond to therapeutic radiation. Cancer Invest.17, 56–72 (1999). CASPubMed Google Scholar
Bernstein, C., Bernstein, H., Payne, C. M. & Garewal, H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat. Res.511, 145–178 (2002). CASPubMed Google Scholar
Prives, C. & Hall, P. A. The p53 pathway. J. Pathol.187, 112–126 (1999). CASPubMed Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). CAS Google Scholar
Ford, J. M. & Hanawalt, P. C. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J. Biol. Chem.272, 28073–28080 (1997). References 34 and 97 indicate a direct involvement of p53 in DNA repair. CASPubMed Google Scholar
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). CASPubMed Google Scholar
Schuler, M. & Green, D. R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans.29, 684–688 (2001). CASPubMed Google Scholar
Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998). CASPubMed Google Scholar
Sheard, M. A. Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis. Int. J. Cancer96, 213–220 (2001). CASPubMed Google Scholar
Embree-Ku, M., Venturini, D. & Boekelheide, K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol. Reprod.66, 1456–1461 (2002). CASPubMed Google Scholar
McGowan, C. H. Checking in on Cds1 (Chk2): a checkpoint kinase and tumor suppressor. Bioessays24, 502–511 (2002). CASPubMed Google Scholar
Albrechtsen, N. et al. Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene18, 7706–7717 (1999). CASPubMed Google Scholar
Troelstra, C. et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol. Cell. Biol.10, 5806–5813 (1990). CASPubMedPubMed Central Google Scholar
Basu, S. & Kolesnick, R. Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene17, 3277–3285 (1998). PubMed Google Scholar
Kolesnick, R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest.110, 3–8 (2002). CASPubMedPubMed Central Google Scholar
Aladjem, M. I. et al. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr. Biol.8, 145–155 (1998). CASPubMed Google Scholar
Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y. & Kondo, S. p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nature Med.2, 577–580 (1996). Loss of p53 in mice is associated with a marked increase in the teratogenic effect of IR, presumably because genetically damaged cells are no longer eliminated by p53-mediated apoptosis. These observations allowed David Lane to name p53 “a guardian of babies”. CASPubMed Google Scholar
Hall, P. A. & Lane, D. P. Tumor suppressors: a developing role for p53? Curr. Biol.7, R144–R147 (1997). CASPubMed Google Scholar
Vos, O. Effects and consequences of prenatal irradiation. Boll. Soc. Ital. Biol. Sper.65, 481–500 (1989). CASPubMed Google Scholar
Hendry, J. H., Cai, W. B., Roberts, S. A. & Potten, C. S. p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat. Res.148, 254–259 (1997). CASPubMed Google Scholar
Hasegawa, M., Zhang, Y., Niibe, H., Terry, N. H. & Meistrich, M. L. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat. Res.149, 263–270 (1998). CASPubMed Google Scholar
Tron, V. A. et al. p53-regulated apoptosis is differentiation dependent in ultraviolet B- irradiated mouse keratinocytes. Am. J. Pathol.153, 579–585 (1998). CASPubMedPubMed Central Google Scholar
Frenkel, J. et al. Accentuated apoptosis in normally developing p53 knockout mouse embryos following genotoxic stress. Oncogene18, 2901–2907 (1999). CASPubMed Google Scholar
Uberti, D. et al. Epithelial cells of different organs exhibit distinct patterns of p53-dependent and p53-independent apoptosis following DNA insult. Exp. Cell Res.252, 123–133 (1999). CASPubMed Google Scholar
Hendry, J. H., Adeeko, A., Potten, C. S. & Morris, I. D. p53 deficiency produces fewer regenerating spermatogenic tubules after irradiation. Int. J. Radiat. Biol.70, 677–682 (1996). CASPubMed Google Scholar
Rojas, A. & Denekamp, J. Modifiers of radiosensitivity. Experientia45, 41–52 (1989). CASPubMed Google Scholar
Jordan, B. F. et al. Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res.62, 3555–3561 (2002). CASPubMed Google Scholar
Neta, R., Douches, S. & Oppenheim, J. J. Interleukin 1 is a radioprotector. J. Immunol.136, 2483–2485 (1986). CASPubMed Google Scholar
Zsebo, K. M. et al. Radioprotection of mice by recombinant rat stem cell factor. Proc. Natl Acad. Sci. USA89, 9464–9468 (1992). CASPubMedPubMed Central Google Scholar
Neta, R., Stiefel, S. M., Finkelman, F., Herrmann, S. & Ali, N. IL-12 protects bone marrow from and sensitizes intestinal tract to ionizing radiation. J. Immunol.153, 4230–4237 (1994). CASPubMed Google Scholar
King, D. P. & Takahashi, J. S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci.23, 713–742 (2000). CASPubMed Google Scholar
Haus, E. Chronobiology of the mammalian response to ionizing radiation potential applications in oncology. Chronobiol. Int.19, 77–100 (2002). PubMed Google Scholar