Rouleau, J. L. et al. Activation of neurohumoral systems following acute myocardial infarction. Am. J. Cardiol.68, 80D–86D (1991). ArticleCASPubMed Google Scholar
Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol.20, 248–254 (1992). ArticleCASPubMed Google Scholar
Piepoli, M. et al. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation93, 940–952 (1996). ArticleCASPubMed Google Scholar
Giannoni, A. et al. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J. Am. Coll. Cardiol.53, 1975–1980 (2009). ArticlePubMed Google Scholar
Ponikowski, P. P. et al. Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation104, 2324–2330 (2001). ArticleCASPubMed Google Scholar
Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J.36, 1974–1982 (2015). ArticleCASPubMedPubMed Central Google Scholar
Florea, V. G. & Cohn, J. N. The autonomic nervous system and heart failure. Circ. Res.114, 1815–1826 (2014). ArticleCASPubMed Google Scholar
Sigurdsson, A. & Swedberg, K. The role of neurohormonal activation in chronic heart failure and postmyocardial infarction. Am. Heart J.132, 229–234 (1996). ArticleCASPubMed Google Scholar
Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med.311, 819–823 (1984). ArticleCASPubMed Google Scholar
Dzau, V. J., Colucci, W. S., Hollenberg, N. K. & Williams, G. H. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation63, 645–651 (1981). ArticleCASPubMed Google Scholar
Francis, G. S. et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. Circulation82, 1724–1729 (1990). ArticleCASPubMed Google Scholar
Mann, D. L., Kent, R. L., Parsons, B. & Cooper, G. I. V. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation85, 790–804 (1992). ArticleCASPubMed Google Scholar
Adams, J. W. et al. Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl Acad. Sci. USA95, 10140–10145 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bisognano, J. D. et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J. Mol. Cell Cardiol.32, 817–830 (2000). ArticleCASPubMed Google Scholar
Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA96, 7059–7064 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bozkurt, B. et al. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation97, 1382–1391 (1998). ArticleCASPubMed Google Scholar
Teerlink, J. R., Pfeffer, J. M. & Pfeffer, M. A. Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ. Res.75, 105–113 (1994). ArticleCASPubMed Google Scholar
Cohn, J. N. et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med.325, 303–310 (1991). ArticleCASPubMed Google Scholar
Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N. Engl. J. Med.334, 1350–1355 (1996). Article Google Scholar
Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med.341, 709–717 (1999). ArticleCASPubMed Google Scholar
The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med.325, 293 (1991).
MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet353, 2001–2007 (1999).
Bristow, M. R. et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. Circulation94, 2807–2816 (1996). ArticleCASPubMed Google Scholar
Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol.15, e147–e239 (2013). Article Google Scholar
Notarius, C. F., Millar, P. J. & Floras, J. S. Muscle sympathetic activity in resting and exercising humans with and without heart failure. Appl. Physiol. Nutr. Metab.40, 1107–1115 (2015). ArticlePubMed Google Scholar
Weinberger, M. H., Aoi, W. & Henry, D. P. Direct effect of beta-adrenergic stimulation on renin release by the rat kidney slice in vitro. Circ. Res.37, 318–324 (1975). ArticleCASPubMed Google Scholar
Bekheirnia, M. R. & Schrier, R. W. Pathophysiology of water and sodium retention: edematous states with normal kidney function. Curr. Opin. Pharmacol.6, 202–207 (2006). ArticleCASPubMed Google Scholar
McCollum, L. T., Gallagher, P. E. & Ann Tallant, E. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. Am. J. Physiol. Heart Circ. Physiol.302, H801–H810 (2012). ArticleCASPubMed Google Scholar
Wamberg, C., Plovsing, R. R., Sandgaard, N. C. & Bie, P. Effects of different angiotensins during acute, double blockade of the renin system in conscious dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol.285, R971–980 (2003). ArticleCASPubMed Google Scholar
Huang, B. S. et al. Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovasc. Res.97, 424–431 (2013). ArticleCASPubMed Google Scholar
Esteban, V. et al. Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ. Res.96, 965–973 (2005). ArticleCASPubMed Google Scholar
Bomback, A. S. & Klemmer, P. J. The incidence and implications of aldosterone breakthrough. Nat. Clin. Pract. Nephrol.3, 486–492 (2007). ArticleCASPubMed Google Scholar
Schrier, R. W. Aldosterone 'escape' versus 'breakthrough'. Nat. Rev. Nephrol.6, 61 (2010). ArticlePubMed Google Scholar
Pitt, B., Remme, W. & Zannad, F. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med.348, 1309–1321 (2003). ArticleCASPubMed Google Scholar
Braunwald, E. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J. Am. Coll. Cardiol.65, 1029–1041 (2015). ArticleCASPubMed Google Scholar
Schrier, R. W. & Abraham, W. T. Hormones and hemodynamics in heart failure. N. Engl. J. Med.341, 577–585 (1999). ArticleCASPubMed Google Scholar
Clerico, A., Recchia, F. A., Passino, C. & Emdin, M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am. J. Physiol. Heart Circ. Physiol.290, H17–H29 (2006). ArticleCASPubMed Google Scholar
Volpe, M., Carnovali, M. & Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin. Sci. (Lond.)130, 57–77 (2016). ArticleCAS Google Scholar
McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med.317, 993–1004 (2014). ArticleCAS Google Scholar
Shah, A. M. & Mann, D. L. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet378, 704–712 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mann, D. L. & Bristow, M. R. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation111, 2837–2849 (2005). ArticlePubMed Google Scholar
van Berlo, J. H., Maillet, M. & Molkentin, J. D. Signaling effectors underlying pathologic growth and remodeling of the heart. J. Clin. Invest.123, 37–45 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lowes, B. D. et al. Changes in gene expression in the intact human heart. Downregulation of alpha-Myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest.100, 2315–2324 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kostin, S., Hein, S., Arnon, E., Scholz, D. & Schaper, J. The cytoskeleton and related proteins in the human failing heart. Heart Fail. Rev.5, 271–280 (2000). ArticleCASPubMed Google Scholar
Hein, S., Kostin, S., Heling, A., Maeno, Y. & Schaper, J. The role of the cytoskeleton in heart failure. Cardiovasc. Res.45, 273–278 (2000). CASPubMed Google Scholar
Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature415, 206–212 (2002). ArticleCASPubMed Google Scholar
Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ. Res.113, 739–753 (2013). ArticleCASPubMed Google Scholar
Feldman, D. S., Carnes, C. A., Abraham, W. T. & Bristow, M. R. Mechanisms of disease: beta-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nat. Clin. Pract. Cardiovasc. Med.2, 475–483 (2005). ArticleCASPubMed Google Scholar
Port, J. D. & Bristow, M. R. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J. Mol. Cell Cardiol.33, 887–905 (2001). ArticleCASPubMed Google Scholar
Bristow, M. R. et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N. Engl. J. Med.307, 205–211 (1982). ArticleCASPubMed Google Scholar
Bristow, M. R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ. Res.59, 297–309 (1986). ArticleCASPubMed Google Scholar
Reiter, E. & Lefkowitz, R. J. GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab.17, 159–165 (2006). ArticleCASPubMed Google Scholar
Ungerer, M., Bohm, M., Elce, J. S., Erdmann, E. & Lohse, M. J. Altered expression of beta-adrenergic receptor kinase and beta1-adrenergic receptors in the failing human heart. Circulation87, 454–463 (1993). ArticleCASPubMed Google Scholar
Iaccarino, G., Tomhave, E. D., Lefkowitz, R. J. & Koch, W. J. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation98, 1783–1789 (1998). ArticleCASPubMed Google Scholar
Rockman, H. A. et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA95, 7000–7005 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rengo, G. et al. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation119, 89–98 (2009). ArticleCASPubMed Google Scholar
Raake, P. W. et al. AAV6.betaARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur. Heart J.34, 1437–1447 (2013). ArticleCASPubMed Google Scholar
Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA98, 5809–5814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rajabi, M., Kassiotis, C., Razeghi, P. & Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev.12, 331–343 (2007). ArticleCASPubMed Google Scholar
Lowes, B. D. et al. Myocardial gene expression in dilated cardiomyopathy treated with beta- blocking agents. N. Engl. J. Med.346, 1357–1365 (2002). ArticleCASPubMed Google Scholar
Brooks, W. W. et al. Captopril modifies gene expression in hypertrophied and failing hearts of aged spontaneously hypertensive rats. Hypertension30, 1362–1368 (1997). ArticleCASPubMed Google Scholar
Wang, J., Guo, X. & Dhalla, N. S. Modification of myosin protein and gene expression in failing hearts due to myocardial infarction by enalapril or losartan. Biochim. Biophys. Acta1690, 177–184 (2004). ArticleCASPubMed Google Scholar
Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell101, 365–376 (2000). ArticleCASPubMed Google Scholar
Arai, M., Alpert, N. R., MacLennan, D. H., Barton, P. & Periasamy, M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. Circ. Res.72, 463–469 (1993). ArticleCASPubMed Google Scholar
Hasenfuss, G. et al. Relation between myocardial function and expression of sarcoplasmic reticulum ca2+-ATPase in failing and nonfailing human myocardium. Circ. Res.75, 434–442 (1994). ArticleCASPubMed Google Scholar
Reiken, S. et al. Beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation104, 2843–2848 (2001). ArticleCASPubMed Google Scholar
Reiken, S. et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation107, 2459–2466 (2003). ArticleCASPubMed Google Scholar
Mann, D. L. Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail. Rev.10, 95–100 (2005). ArticlePubMed Google Scholar
Guerra, S. et al. Myocyte death in the failing human heart is gender dependent. Circ. Res.85, 856–866 (1999). ArticleCASPubMed Google Scholar
Kostin, S. et al. Myocytes die by multiple mechanisms in failing human hearts. Circ. Res.92, 715–724 (2003). ArticleCASPubMed Google Scholar
Whelan, R. S., Kaplinskiy, V. & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol.72, 19–44 (2010). ArticleCASPubMed Google Scholar
Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.16, 3–11 (2009). ArticleCASPubMed Google Scholar
Tan, L. B., Jalil, J. E., Pick, R., Janicki, J. S. & Weber, K. T. Cardiac myocyte necrosis induced by angiotensin II. Circ. Res.69, 1185–1195 (1991). ArticleCASPubMed Google Scholar
Todd, G. L., Baroldi, G., Pieper, G. M., Clayton, F. C. & Eliot, R. S. Experimental catecholamine-induced myocardial ncrosis I. Morphology, quantification and regional distribution of acute contraction band lesions. J. Mol. Cell. Cardiol.17, 317–338 (1985). ArticleCASPubMed Google Scholar
Zhang, W. et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart Assoc.4, e001993 (2015). PubMedPubMed Central Google Scholar
Epelman, S., Liu, P. P. & Mann, D. L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol.15, 117–129 (2015). ArticleCASPubMedPubMed Central Google Scholar
Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med.336, 1131–1141 (1997). ArticleCASPubMed Google Scholar
Saraste, A. et al. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur. J. Clin. Invest.29, 380–386 (1999). ArticleCASPubMed Google Scholar
Communal, C., Singh, K., Sawyer, D. B. & Colucci, W. S. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation100, 2210–2212 (1999). ArticleCASPubMed Google Scholar
Haudek, S. B., Taffet, G. E., Schneider, M. D. & Mann, D. L. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J. Clin. Invest.117, 2692–2701 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kajstura, J. et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J. Mol. Cell Cardiol.29, 859–870 (1997). ArticleCASPubMed Google Scholar
Lavandero, S., Chiong, M., Rothermel, B. A. & Hill, J. A. Autophagy in cardiovascular biology. J. Clin. Invest.125, 55–64 (2015). ArticlePubMedPubMed Central Google Scholar
Ma, X. et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation125, 3170–3181 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci.71, 549–574 (2014). ArticleCASPubMed Google Scholar
Davis, J. & Molkentin, J. D. Myofibroblasts: trust your heart and let fate decide. J. Mol. Cell Cardiol.70, 9–18 (2014). ArticleCASPubMed Google Scholar
Hartupee, J. & Mann, D. L. Role of inflammatory cells in fibroblast activation. J. Mol. Cell Cardiol93, 143–148 (2016). ArticleCASPubMed Google Scholar
Schorb, W. et al. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ. Res.72, 1245–1254 (1993). ArticleCASPubMed Google Scholar
Sadoshima, J. I. & Izumo, S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res.73, 413–423 (1993). ArticleCASPubMed Google Scholar
Brilla, C. G., Funck, R. C. & Rupp, H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation102, 1388–1393 (2000). ArticleCASPubMed Google Scholar
Izawa, H. et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation112, 2940–2945 (2005). ArticleCASPubMed Google Scholar
Zannad, F., Alla, F., Dousset, B., Perez, A. & Pitt, B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation102, 2700–2706 (2000). ArticleCASPubMed Google Scholar
Li, Y. Y., Feldman, A. M., Sun, Y. & McTiernan, C. F. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation98, 1728–1734 (1998). ArticleCASPubMed Google Scholar
Creemers, E. E. et al. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol.284, H364–H371 (2003). ArticleCASPubMed Google Scholar
Ducharme, A. et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Invest.106, 55–62 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kim, H. E. et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J. Clin. Invest.106, 857–866 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peterson, J. T. et al. Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation103, 2303–2309 (2001). ArticleCASPubMed Google Scholar
Koitabashi, N. & Kass, D. A. Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat. Rev. Cardiol.9, 147–157 (2012). ArticleCAS Google Scholar
Mann, D. L., Barger, P. M. & Burkhoff, D. Myocardial recovery: myth, magic or molecular target? J. Am. Coll. Cardiol.60, 2465–2472 (2012). ArticlePubMedPubMed Central Google Scholar