HCC and angiogenesis: possible targets and future directions (original) (raw)
Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127, 2893–2917 (2010). ArticleCASPubMed Google Scholar
Thomas, M. B. & Zhu, A. X. Hepatocellular carcinoma: the need for progress. J. Clin. Oncol/23, 2892–2899, (2005). Google Scholar
Fong, Y., Kemeny, N. & Lawrence, T. S. in Cancer, Principles and Practice of Oncology 6th edn (eds DeVita, V. T., Hellman, S. & Rosenberg, S. A.) 1162–1203 (Lippincott Williams and Wilkins, Philadelphia, PA, USA, 2001). Google Scholar
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov.6, 273–286 (2007). CASPubMed Google Scholar
Van de Veire, S. et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell141, 178–190 (2010). CASPubMed Google Scholar
Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med.359, 378–390 (2008). CASPubMed Google Scholar
Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004). CASPubMed Google Scholar
Sun, H. C. & Tang, Z. Y. Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J. Cancer Res. Clin. Oncol.130, 307–319 (2004). PubMed Google Scholar
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005). CASPubMed Google Scholar
Jain, R. K. Taming vessels to treat cancer. Sci. Am.298, 56–63 (2008). PubMed Google Scholar
Naugler, W. E. & Karin, M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med.14, 109–119 (2008). CASPubMed Google Scholar
Zhu, A. X. et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol.27, 3027–3035 (2009). CASPubMedPubMed Central Google Scholar
Abou-Alfa, G. K. et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol.24, 4293–4300 (2006). CASPubMed Google Scholar
Yang, Z. F. & Poon, R. T. Vascular changes in hepatocellular carcinoma. Anat. Rec. (Hoboken)291, 721–734 (2008). CAS Google Scholar
Fukumura, D., Yuan, F., Monsky, W. L., Chen, Y. & Jain, R. K. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Pathol.151, 679–688 (1997). CASPubMedPubMed Central Google Scholar
Wu, X. Z., Xie, G. R. & Chen, D. Hypoxia and hepatocellular carcinoma: the therapeutic target for hepatocellular carcinoma. J. Gastroenterol. Hepatol.22, 1178–1182 (2007). CASPubMed Google Scholar
Jain, R. K., Tong, R. T. & Munn, L. L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res.67, 2729–2735 (2007). CASPubMedPubMed Central Google Scholar
LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science299, 890–893 (2003). CASPubMed Google Scholar
Lichtenberger, B. M. et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell140, 268–279 (2010). CASPubMed Google Scholar
Fukumura, D. et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res.61, 6020–6024 (2001). CASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000). CASPubMed Google Scholar
Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol.20, 4368–4380 (2002). CASPubMed Google Scholar
Fukumura, D., Kashiwagi, S. & Jain, R. K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer6, 521–534 (2006). CASPubMed Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). CASPubMed Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol.2, 737–744 (2000). CASPubMedPubMed Central Google Scholar
Amarapurkar, A. D., Amarapurkar, D. N., Vibhav, S. & Patel, N. D. Angiogenesis in chronic liver disease. Ann. Hepatol.6, 170–173 (2007). CASPubMed Google Scholar
Ho, J. W. et al. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology44, 836–843 (2006). CASPubMed Google Scholar
Jain, R. K. Molecular regulation of vessel maturation. Nat. Med.9, 685–693 (2003). CASPubMed Google Scholar
Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med.9, 669–676 (2003). CASPubMed Google Scholar
Semela, D. & Dufour, J. F. Angiogenesis and hepatocellular carcinoma. J. Hepatol.41, 864–880 (2004). PubMed Google Scholar
Roberts, L. R. & Gores, G. J. Emerging drugs for hepatocellular carcinoma. Expert Opin. Emerg. Drugs11, 469–487 (2006). CASPubMed Google Scholar
Mas, V. R., Maluf, D. G., Archer, K. J., Yanek, K. C. & Fisher, R. A. Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation84, 1262–1271 (2007). PubMed Google Scholar
Poon, R. T. et al. Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma. Am. J. Surg.182, 298–304 (2001). CASPubMed Google Scholar
Poon, R. T. et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann. Surg.233, 227–235 (2001). CASPubMedPubMed Central Google Scholar
Dhar, D. K. et al. Requisite role of VEGF receptors in angiogenesis of hepatocellular carcinoma: a comparison with angiopoietin/Tie pathway. Anticancer Res.22, 379–386 (2002). CASPubMed Google Scholar
El-Assal, O. N. et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology27, 1554–1562 (1998). CASPubMed Google Scholar
Park, Y. N., Kim, Y. B., Yang, K. M. & Park, C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch. Pathol. Lab. Med.124, 1061–1065 (2000). CASPubMed Google Scholar
Yamaguchi, R. et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology28, 68–77 (1998). CASPubMed Google Scholar
Li, X. M., Tang, Z. Y., Zhou, G., Lui, Y. K. & Ye, S. L. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res.17, 13–17 (1998). PubMed Google Scholar
Yao, D. F. et al. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int.4, 220–226 (2005). CASPubMed Google Scholar
Zhou, J. et al. Expression of platelet-derived endothelial cell growth factor and vascular endothelial growth factor in hepatocellular carcinoma and portal vein tumor thrombus. J. Cancer Res. Clin. Oncol.126, 57–61 (2000). CASPubMed Google Scholar
Poon, R. T. et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br. J. Surg.91, 1354–1360 (2004). CASPubMed Google Scholar
Chao, Y. et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann. Surg. Oncol.10, 355–362 (2003). PubMed Google Scholar
Tamesa, T. et al. High serum levels of vascular endothelial growth factor after hepatectomy are associated with poor prognosis in hepatocellular carcinoma. Hepatogastroenterology56, 1122–1126 (2009). CASPubMed Google Scholar
Xiong, H. Q. et al. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest. New Drugs22, 459–466 (2004). CASPubMed Google Scholar
Li, X., Feng, G. S., Zheng, C. S., Zhuo, C. K. & Liu, X. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J. Gastroenterol.10, 2878–2882 (2004). CASPubMedPubMed Central Google Scholar
Shim, J. H. et al. Association between increment of serum VEGF level and prognosis after transcatheter arterial chemoembolization in hepatocellular carcinoma patients. Cancer Sci.99, 2037–2044 (2008). CASPubMed Google Scholar
Sergio, A. et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am. J. Gastroenterol.103, 914–921 (2008). PubMed Google Scholar
Poon, R. T. et al. High serum vascular endothelial growth factor levels predict poor prognosis after radiofrequency ablation of hepatocellular carcinoma: importance of tumor biomarker in ablative therapies. Ann. Surg. Oncol.14, 1835–1845 (2007). PubMed Google Scholar
Cui, J., Dong, B. W., Liang, P., Yu, X. L. & Yu, D. J. Effect of c-myc, Ki-67, MMP-2 and VEGF expression on prognosis of hepatocellular carcinoma patients undergoing tumor resection. World J. Gastroenterol.10, 1533–1536 (2004). CASPubMedPubMed Central Google Scholar
Hu, J. et al. High expressions of vascular endothelial growth factor and platelet-derived endothelial cell growth factor predict poor prognosis in alpha-fetoprotein-negative hepatocellular carcinoma patients after curative resection. J. Cancer Res. Clin. Oncol.135, 1359–1367 (2009). CASPubMed Google Scholar
Moon, J. I. et al. Expression of vascular endothelial growth factor (VEGF) family members and prognosis after hepatic resection in HBV-related hepatocellular carcinoma [Korean]. Korean J. Hepatol.14, 185–196 (2008). PubMed Google Scholar
Jeng, K. S. et al. Prognostic significance of preoperative circulating vascular endothelial growth factor messenger RNA expression in resectable hepatocellular carcinoma: a prospective study. World J. Gastroenterol.10, 643–648 (2004). CASPubMedPubMed Central Google Scholar
Jeng, K. S. et al. Is the vascular endothelial growth factor messenger RNA expression in resectable hepatocellular carcinoma of prognostic value after resection? World J. Gastroenterol.10, 676–681 (2004). CASPubMedPubMed Central Google Scholar
Ho, M. C. et al. Placenta growth factor not vascular endothelial growth factor A or C can predict the early recurrence after radical resection of hepatocellular carcinoma. Cancer Lett.250, 237–249 (2007). CASPubMed Google Scholar
Wada, H. et al. Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int.26, 414–423 (2006). CASPubMed Google Scholar
Cheng, A. L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol.10, 25–34 (2009). CASPubMed Google Scholar
McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA104, 19936–19941 (2007). CASPubMedPubMed Central Google Scholar
Dufour, J. F. et al. Continuous administration of sorafenib in combination with transarterial chemoembolization in patients with hepatocellular carcinoma: results of a phase I study. Oncologist15, 1198–1204 (2010). CASPubMedPubMed Central Google Scholar
Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol.29, 11–16 (2010). PubMedPubMed Central Google Scholar
Van Cutsem, E., Lambrechts, D., Prenen, H., Jain, R. K. & Carmeliet, P. Lessons from the adjuvant bevacizumab trial in colon cancer: what next? J. Clin. Oncol.29, 1–4 (2010). PubMed Google Scholar
Arora, A. & Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther.315, 971–979 (2005). CASPubMed Google Scholar
Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res.9, 327–337 (2003). CASPubMed Google Scholar
Pawson, T. Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer38 (Suppl. 5), S3–S10 (2002). PubMed Google Scholar
Faivre, S. et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol.10, 794–800 (2009). CASPubMed Google Scholar
Hoda, D. et al. Phase II study of sunitinib malate in adult patients with metastatic or surgically unresectable hepatocellular carcinoma (HCC) [abstract]. Proc. 2008 Gastrointestinal Cancers Symp. a267 (2008).
Koeberle, D. et al. Continuous sunitinib treatment in patients with advanced hepatocellular carcinoma: a Swiss Group for Clinical Cancer Research (SAKK) and Swiss Association for the Study of the Liver (SASL) multicenter phase II trial (SAKK 77/06). Oncologist15, 285–292 (2010). CASPubMedPubMed Central Google Scholar
Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet368, 1329–1338 (2006). CASPubMed Google Scholar
Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol.27, 3584–3590 (2009). CASPubMedPubMed Central Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). CASPubMedPubMed Central Google Scholar
Zhu, A. X. et al. A phase II study of ramucirumab as first-line monotherapy in patients with advanced hepatocellular carcinoma [abstract]. J. Clin. Oncol.28 (15 Suppl.), a4083 (2010). Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med.7, 987–989 (2001). CASPubMed Google Scholar
Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med.10, 145–147 (2004). CASPubMedPubMed Central Google Scholar
Siegel, A. B. et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J. Clin. Oncol.26, 2992–2998 (2008). CASPubMed Google Scholar
Zhu, A. X. et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J. Clin. Oncol.24, 1898–1903 (2006). CASPubMed Google Scholar
Hsu, C. H. et al. Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br. J. Cancer102, 981–986 (2010). CASPubMedPubMed Central Google Scholar
Sun, W. et al. Combination of capecitabine, oxaliplatin with bevacizumab in treatment of advanced hepatocellular carcinoma: a phase II study [abstract]. J. Clin. Oncol.25 (18 Suppl.), a4574 (2007). Google Scholar
Malka, D. et al. Bevacizumab in patients with advanced hepatocellular carcinoma: preliminary results of a phase II study with circulating endothelial cell monitoring [abstract]. J. Clin. Oncol.25 (18 Suppl.), a4570 (2007). Google Scholar
Thomas, M. B. et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J. Clin. Oncol.27, 843–850 (2009). CASPubMed Google Scholar
Albert, D. H. et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Cancer Ther.5, 995–1006 (2006). CASPubMed Google Scholar
Toh, H. et al. Linifanib phase II trial in patients with advanced hepatocellular carcinoma [abstract]. J. Clin. Oncol.28 (15 Suppl.), a4038 (2010). Google Scholar
Wedge, S. R. et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res.65, 4389–4400 (2005). CASPubMed Google Scholar
Alberts, S. R. et al. NCCTG phase II trial (N044J) of AZD2171 for patients with hepatocellular carcinoma—interim review of toxicity [abstract]. Proc. 2007 Gastrointestinal Cancers Symp. a186 (2007).
Yau, C. C. et al. A phase I study of pazopanib in patients with advanced hepatocellular carcinoma [abstract]. J. Clin. Oncol.27 (15 Suppl.), a3561 (2009). Google Scholar
Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res.60, 2178–89 (2000). CASPubMed Google Scholar
Drevs, J. et al. PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res.62, 4015–4022 (2002). CASPubMed Google Scholar
Koch, I. et al. Influence of hepatic dysfunction on safety, tolerability, and pharmacokinetics of PTK787/ZK 222584 in patients with unresectable hepatocellular carcinoma [abstract]. J. Clin. Oncol.23 (16 Suppl.), a4134 (2005). Google Scholar
Yau, T. et al. Phase 1–2 trial of PTK787/ZK222584 combined with intravenous doxorubicin for treatment of patients with advanced hepatocellular carcinoma: implication for antiangiogenic approach to hepatocellular carcinoma. Cancer116, 5022–5029 (2010). CASPubMed Google Scholar
Huynh, H. et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res.14, 6146–6153 (2008). CASPubMed Google Scholar
Ohta, M. et al. TSU68, an antiangiogenic receptor tyrosine kinase inhibitor, induces tumor vascular normalization in a human cancer xenograft nude mouse model. Surg. Today39, 1046–1053 (2009). CASPubMed Google Scholar
Raoul, J. L. et al. An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma [abstract]. J. Clin. Oncol.27 (15 Suppl.), a4577 (2009). Google Scholar
Kanai, F. et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother. Pharmacol.67, 315–324 (2011). CASPubMed Google Scholar
Eder, J. P. et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin. Cancer Res.16, 3507–3516 (2010). CASPubMed Google Scholar
Llovet, J. M. et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl Cancer Inst.100, 698–711 (2008). PubMed Google Scholar
Zhu, A. X., Duda, D. G., Sahani, D. V. & Jain, R. K. Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience and correlative studies. Cancer J.15, 263–268 (2009). CASPubMedPubMed Central Google Scholar
Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst.92, 205–216 (2000). CASPubMed Google Scholar
Faivre, S. J., Bouattour, M., Dreyer, C. & Raymond, E. Sunitinib in hepatocellular carcinoma: redefining appropriate dosing, schedule, and activity end points. J. Clin. Oncol.27, e248–e250 (2009). CASPubMed Google Scholar
Bruix, J. et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J. Hepatol.35, 421–430 (2001). CASPubMed Google Scholar
Miller, J. C., Pien, H. H., Sahani, D., Sorensen, A. G. & Thrall, J. H. Imaging angiogenesis: applications and potential for drug development. J. Natl Cancer Inst.97, 172–187 (2005). CASPubMed Google Scholar
Suzuki, C. et al. Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics28, 329–344 (2008). PubMed Google Scholar
Forner, A. et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer115, 616–623 (2009). PubMed Google Scholar
Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol.6, 327–338 (2009). CASPubMedPubMed Central Google Scholar
Farazi, P. A. & DePinho, R. A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer6, 674–687 (2006). CASPubMed Google Scholar
Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer2, 826–835 (2002). CASPubMed Google Scholar
Zhu, A. X. et al. Exploratory analysis of early toxicity of sunitinib in advanced hepatocellular carcinoma patients: Kinetics and potential biomarker value. Clin. Cancer Res.17, 918–927 (2011). CASPubMed Google Scholar
Kumar, R. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br. J. Cancer101, 1717–1723 (2009). CASPubMedPubMed Central Google Scholar
Toh, H., Chen, P. & Carr, B. et al. A phase II study of ABT-869 in hepatocellular carcinoma (HCC): interim analysis [abstract]. J. Clin. Oncol.27 (15 Suppl.), a4581 (2009). Google Scholar
Shao, Y. Y. et al. Early alpha-fetoprotein response predicts treatment efficacy of antiangiogenic systemic therapy in patients with advanced hepatocellular carcinoma. Cancer116, 4590–4596 (2010). CASPubMed Google Scholar
DePrimo, S. E. et al. Circulating biomarkers of sunitinib in patients with unresectable hepatocellular carcinoma (HCC): analysis of correlations with outcome and tumor imaging parameters [abstact]. J. Clin. Oncol.26 (Suppl.), a4593 (2008). Google Scholar
Boige, V. et al. Circulating endothelial cells (CECs) and angiogenic proteins monitoring in patients (pts) with advanced hepatocellular carcinoma (HCC) treated with bevacizumab [abstract]. J. Clin. Oncol.27 (15 Suppl.), a4597 (2009). Google Scholar
Kaseb, A. O. et al. Molecular predictors of response to antiangiogenic therapy in HCC: Data from bevacizumab and erlotinib phase II study [abstract]. J. Clin. Oncol.28 (15 Suppl.), a4046 (2010). Google Scholar
Shao, Y. et al. Prognostic values of baseline circulating endothelial progenitor level for advanced hepatocellular carcinoma (HCC) patients under antiangiogenic therapy [abstract]. J. Clin. Oncol.28 (15 Suppl.), a4063 (2010). Google Scholar
Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov.3, 391–400 (2004). CASPubMed Google Scholar
Hood, J. D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science296, 2404–2407 (2002). CASPubMed Google Scholar
Gagnon, M. L. et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl Acad. Sci. USA97, 2573–2578 (2000). CASPubMedPubMed Central Google Scholar
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature438, 932–936 (2005). CASPubMed Google Scholar
Gridley, T. Vascular biology: vessel guidance. Nature445, 722–723 (2007). CASPubMed Google Scholar
Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood107, 931–939 (2006). CASPubMedPubMed Central Google Scholar
Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development134, 839–844 (2007). CASPubMed Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). CASPubMed Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). PubMed Google Scholar
Vincent, F. et al. Angiotensinogen delays angiogenesis and tumor growth of hepatocarcinoma in transgenic mice. Cancer Res.69, 2853–2860 (2009). CASPubMed Google Scholar
Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell10, 159–170 (2006). CASPubMedPubMed Central Google Scholar
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature454, 436–444 (2008). CASPubMed Google Scholar
Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466 (2004). CASPubMed Google Scholar
He, G. et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell17, 286–297 (2010). CASPubMedPubMed Central Google Scholar
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell140, 197–208 (2010). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin. Cancer Res.16, 3420–3430 (2010). CASPubMed Google Scholar
Sakurai, T. et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell14, 156–165 (2008). CASPubMedPubMed Central Google Scholar
Carmi, Y. et al. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis. J. Immunol.183, 4705–4714 (2009). CASPubMed Google Scholar
Germano, G., Allavena, P. & Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine43, 374–379 (2008). CASPubMed Google Scholar
Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat. Med.11, 992–997 (2005). CASPubMed Google Scholar
Kubo, F. et al. Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Ann. Surg. Oncol.12, 800–807 (2005). PubMed Google Scholar
Brat, D. J., Bellail, A. C. & Van Meir, E. G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro. Oncol.7, 122–133 (2005). CASPubMedPubMed Central Google Scholar
Li, W., Gomez, E. & Zhang, Z. Immunohistochemical expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 ligand receptor system in hepatocellular carcinoma. J. Exp. Clin. Cancer Res.26, 527–533 (2007). CASPubMed Google Scholar
Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124, 175–189 (2006). CASPubMed Google Scholar
Mansuroglu, T. et al. Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma. Lab. Invest.89, 562–574 (2009). CASPubMed Google Scholar
Wang, B., Gao, Z. Q. & Yan, X. Correlative study of angiogenesis and dynamic contrast-enhanced magnetic resonance imaging features of hepatocellular carcinoma. Acta Radiol.46, 353–358 (2005). CASPubMed Google Scholar
d'Assignies, G. et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology250, 407–416 (2009). PubMed Google Scholar
Sahani, D. V., Holalkere, N. S., Mueller, P. R. & Zhu, A. X. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue--initial experience. Radiology243, 736–743 (2007). PubMed Google Scholar
Zhu, A. X., Holalkere, N. S., Muzikansky, A., Horgan, K. & Sahani, D. V. Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist13, 120–125 (2008). CASPubMed Google Scholar
Liaw, J V. et al. Tumor vascularity assessment in hepatocellular carcinoma and disease free caudate and spleen before and after targeted therapy using a distributed parameter model [abstract]. Presented at RSNA 2009.
Jarnagin, W. R. et al. Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann. Oncol.20, 1589–1595 (2009). CASPubMedPubMed Central Google Scholar
Sorensen, A. G. et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res.69, 5296–5300 (2009). CASPubMedPubMed Central Google Scholar
Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11, 83–95 (2007). CASPubMedPubMed Central Google Scholar
Battistella, M. et al. Sunitinib efficacy in the treatment of metastatic skin adnexal carcinomas: report of two patients with hidradenocarcinoma and trichoblastic carcinoma. J. Eur. Acad. Dermatol. Venereol.24, 199–203 (2010). CASPubMed Google Scholar
Lassau, N. et al. Dynamic contrast-enhanced ultrasonography (DCE-US): a new tool for the early evaluation of antiangiogenic treatment. Target. Oncol.5, 53–58 (2010). PubMed Google Scholar