Wilson, W. H. et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med.21, 922–926 (2015). CASPubMedPubMed Central Google Scholar
Friedberg, J. W. et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood115, 2578–2585 (2010). CASPubMedPubMed Central Google Scholar
Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med.369, 507–516 (2013). CASPubMedPubMed Central Google Scholar
Dreyling, M. et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet387, 770–778 (2016). CASPubMed Google Scholar
Byrd, J. C. et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med.371, 213–223 (2014). PubMedPubMed Central Google Scholar
Treon, S. P. et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N. Engl. J. Med.372, 1430–1440 (2015). CASPubMed Google Scholar
Younes, A. et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol.15, 1019–1026 (2014). CASPubMed Google Scholar
Bartlett, N. L. et al. Ibrutinib monotherapy in relapsed/refractory follicular lymphoma (FL): preliminary results of a phase 2 consortium (P2C) trial. Blood124, 800 (2014). Google Scholar
Christian, B. et al. A phase I study of ibrutinib and lenalidomide in patients with relapsed and refractory B-cell non-hodgkin's lymphoma. Blood124, 4476 (2014). Google Scholar
Fowler, N. et al. Ibrutinib plus rituximab in treatment-naive patients with follicular lymphoma: results from a multicenter, phase 2 study. Blood126, 470 (2015). Google Scholar
Ujjani, C. S. et al. Phase I study of rituximab, lenalidomide, and ibrutinib in previously untreated follicular lymphoma (alliance 051103). Blood126, 471 (2015). Google Scholar
Woyach, J. A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med.370, 2286–2294 (2014). PubMedPubMed Central Google Scholar
Cao, Y. et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88L265P-directed survival signalling in Waldenstrom macroglobulinaemia cells. Br. J. Haematol.168, 701–707 (2015). CASPubMed Google Scholar
Advani, R. H. et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol.31, 88–94 (2013). CASPubMed Google Scholar
Mohamed, A. J. et al. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev.228, 58–73 (2009). CASPubMed Google Scholar
Readinger, J. A., Mueller, K. L., Venegas, A. M., Horai, R. & Schwartzberg, P. L. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol. Rev.228, 93–114 (2009). CASPubMedPubMed Central Google Scholar
Andreotti, A. H., Schwartzberg, P. L., Joseph, R. E. & Berg, L. J. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb. Perspect. Biol.2, a002287 (2010). PubMedPubMed Central Google Scholar
Dubovsky, J. A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood122, 2539–2549 (2013). CASPubMedPubMed Central Google Scholar
Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med.371, 323–332 (2015). Google Scholar
Tam, C. et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/ refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood126, 832 (2015). Google Scholar
Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med.370, 1008–1018 (2014). CASPubMedPubMed Central Google Scholar
Coutré, S. E. et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk. Lymphoma56, 2779–2786 (2015). PubMedPubMed Central Google Scholar
Khan, K. H. et al. Hyperglycemia and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) inhibitors in phase I trials: incidence, predictive factors, and management. Oncologist21, 855–860 (2016). CASPubMedPubMed Central Google Scholar
Chiron, D. et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov.4, 1022–1035 (2014). CASPubMedPubMed Central Google Scholar
Choudhary, G. S. et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis.6, e1593 (2015). CASPubMedPubMed Central Google Scholar
Forero-Torres, A. et al. A phase 1 study of INCB040093, a PI3Kδ inhibitor, alone or in combination with INCB039110, a selective JAK1 inhibitor: interim results from patients (pts) with relapsed or refractory (r/r) classical Hodgkin lymphoma (cHL). ASCO Meeting Abstracts33 (Suppl. 15), 8558 (2015). Google Scholar
Gaudio, E. et al. Combination of the MEK inhibitor pimasertib with BTK or PI3K-δ inhibitors is active in preclinical models of aggressive lymphomas. Ann. Oncol.27, 1123–1128 (2016). CASPubMed Google Scholar
Lee, J. S., Tang, S. S., Ortiz, V., Vo, T. T. & Fruman, D. A. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. Oncotarget6, 35202–35217 (2015). PubMedPubMed Central Google Scholar
Younes, A. et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol.17, 622–631 (2016). CASPubMedPubMed Central Google Scholar
Cheah, C. Y. et al. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood125, 3357–3359 (2015). CASPubMedPubMed Central Google Scholar
Green, D. R. A BH3 mimetic for killing cancer cells. Cell165, 1560 (2016). CASPubMed Google Scholar
Roberts, A. W. et al. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br. J. Haematol.170, 669–678 (2015). CASPubMedPubMed Central Google Scholar
Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol.11, 1149–1159 (2010). CASPubMedPubMed Central Google Scholar
Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med.19, 202–208 (2013). CASPubMed Google Scholar
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med.374, 311–322 (2015). PubMedPubMed Central Google Scholar
Jones, J. et al. Preliminary results of a phase 2, open-label study of venetoclax (ABT-199/GDC-0199) monotherapy in patients with chronic lymphocytic leukemia relapsed after or refractory to ibrutinib or idelalisib therapy. Blood126, 715 (2015). Google Scholar
Gerecitano, J. F. et al. A phase 1 study of venetoclax (ABT-199 / GDC-0199) monotherapy in patients with relapsed/refractory non-Hodgkin lymphoma. Blood126, 254 (2015) Google Scholar
Phillips, D. C. et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J.5, e368 (2015). CASPubMedPubMed Central Google Scholar
Oppermann, S. et al. Identification of kinase inhibitors that overcome venetoclax resistance in activated CLL cells by high-content screening. Blood128, 934–947 (2016). CASPubMedPubMed Central Google Scholar
Derenzini, E. & Younes, A. Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib. Expert Opin. Investig. Drugs22, 775–785 (2013). CASPubMed Google Scholar
O'Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med.66, 311–328 (2015). CASPubMedPubMed Central Google Scholar
Younes, A. et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J. Clin. Oncol.30, 4161–4167 (2012). CASPubMedPubMed Central Google Scholar
Blunt, M. D. et al. The Syk\\Jak inhibitor cerdulatinib shows promising preclinical activity in chronic lymphocytic leukemia by antagonising B cell receptor and microenvironmental signalling. Blood126, 1716 (2015). Google Scholar
Leeds, J. M. et al. Abstract CT144: preclinical and clinical studies and modeling and simulation to identify phase II dose for cerdulatinib: a dual SYK/JAK inhibitor for the treatment of B-cell malignancies. Cancer Res.76 (Suppl 14), CT144 (2016). Google Scholar
Gribben, J. G., Fowler, N. & Morschhauser, F. Mechanisms of action of lenalidomide in B-cell non-Hodgkin lymphoma. J. Clin. Oncol.33, 2803–2811 (2015). CASPubMedPubMed Central Google Scholar
Witzig, T. E. et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin's Lymphoma. J. Clin. Oncol.27, 5404–5409 (2009). CASPubMed Google Scholar
Vose, J. M. et al. Single-agent lenalidomide is active in patients with relapsed or refractory aggressive non-Hodgkin lymphoma who received prior stem cell transplantation. Br. J. Haematol.162, 639–647 (2013). CASPubMed Google Scholar
Witzig, T. E. et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. Ann. Oncol.22, 1622–1627 (2011). CASPubMed Google Scholar
Goy, A. et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J. Clin. Oncol.31, 3688–3695 (2013). CASPubMedPubMed Central Google Scholar
Fowler, N. H. et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol.15, 1311–1318 (2014). CASPubMedPubMed Central Google Scholar
Wang, M. et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol.13, 716–723 (2012). PubMed Google Scholar
Ruan, J. et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N. Engl. J. Med.373, 1835–1844 (2015). CASPubMedPubMed Central Google Scholar
Nowakowski, G. S. et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non–germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study. J. Clin. Oncol.33, 251–257 (2015). CASPubMed Google Scholar
Vitolo, U. et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol.15, 730–737 (2014). CASPubMed Google Scholar
Batlevi, C. L., Matsuki, E., Brentjens, R. J. & Younes, A. Novel immunotherapies in lymphoid malignancies. Nat. Rev. Clin. Oncol.13, 25–40 (2015). PubMedPubMed Central Google Scholar
Campbell, M. T., Siefker-Radtke, A. O. & Gao, J. The state of immune checkpoint inhibition in urothelial carcinoma: current evidence and future areas of exploration. Cancer J.22, 96–100 (2016). CASPubMed Google Scholar
Naidoo, J., Page, D. B. & Wolchok, J. D. Immune checkpoint blockade. Hematol. Oncol. Clin. North Am.28, 585–600 (2014). PubMed Google Scholar
Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell27, 450–461 (2015). CASPubMedPubMed Central Google Scholar
Ansell, S. M. et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res.15, 6446–6453 (2009). CASPubMedPubMed Central Google Scholar
Armand, P. et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol.31, 4199–4206 (2013). CASPubMedPubMed Central Google Scholar
Westin, J. R. et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol.15, 69–77 (2014). CASPubMed Google Scholar
Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med.372, 311–319 (2015). PubMed Google Scholar
Armand, P. et al. PD-1 Blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: safety, efficacy, and biomarker assessment. Blood126, 584 (2015). Google Scholar
Zinzani, P. L. et al. Phase 1b study of PD-1 blockade with pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma (PMBCL). Blood126, 3986 (2015). Google Scholar
Younes, A. et al. Checkmate 205: Nivolumab (nivo) in classical Hodgkin lymphoma (cHL) after autologous stem cell transplant (ASCT) and brentuximab vedotin (BV)—A phase 2 study. ASCO Meeting Abstracts34 (Suppl 15), 7535 (2016). Google Scholar
Lesokhin, A. M. et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J. Clin. Oncol.34, 2698–2704 (2016). CASPubMedPubMed Central Google Scholar
Till, B. G. et al. Safety and clinical activity of atezolizumab (anti-PDL1) in combination with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma. Blood126, 5104 (2015). Google Scholar
Sagiv-Barfi, I. et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc. Natl. Acad. Sci. USA112, E966–E972 (2015). CASPubMedPubMed Central Google Scholar
Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol.33, 540–549 (2015). CASPubMed Google Scholar
Ramos, C. A., Heslop, H. E. & Brenner, M. K. CAR-T cell therapy for lymphoma. Annu. Rev. Med.67, 165–183 (2016). CASPubMed Google Scholar
Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med.5, 177ra138 (2013). Google Scholar
Schuster, S. J. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood126, 183 (2015). Google Scholar
Ryan, M. et al. SGN-CD198, a pyrrolobenzodiazepine (PBD)-based anti-CD19 drug conjugate, demonstrates potent preclinical activity against B-cell malignacies. Blood126, (2015).
McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J.17, 339–351 (2015). CASPubMedPubMed Central Google Scholar
Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med.363, 1812–1821 (2010). CASPubMed Google Scholar
Advani, A. et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J. Clin. Oncol.28, 2085–2093 (2010). CASPubMed Google Scholar
Advani, R. et al. A phase I study of DCDT2980S, an antibody-drug conjugate (ADC) targeting CD22, in relapsed or refractory B-cell non-Hodgkin's lymphoma (NHL). Abs 59. Blood120, 59 (2012). Google Scholar
Ribrag, V. et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res.20, 213–220 (2014). CASPubMed Google Scholar
Palanca-Wessels, M. C. et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol.16, 704–715 (2015). CASPubMed Google Scholar
Bartlett, N. et al. A phase 2 study of Brentuximab Vedotin in patients with relapsed or refractory CD30-positive non-Hodgkin lymphomas: interim results in patients with DLBCL and other B-cell lymphomas. Blood122, 848 (2013). Google Scholar
Bartlett, N. L. et al. Brentuximab vedotin monotherapy in DLBCL patients with undetectable CD30: preliminary results from a phase 2 study. Blood124, 629 (2014). Google Scholar
Forero-Torres, A. et al. Interim analysis of a phase 1, open-label, dose-escalation study of SGN-CD19A in patients with relapsed or refractory B-lineage non-Hodgkin lymphoma (NHL). J. Clin. Oncol.32 (Suppl 5), 8505 (2014). Google Scholar
Morschhauser, F. et al. Preliminary results of a phase II randomized study (ROMULUS) of polatuzumab vedotin (PoV) or pinatuzumab vedotin (PiV) plus rituximab (RTX) in pts with relapsed/refractory non-Hodgkin lymphoma. J. Clin. Oncol.32 (Suppl 5), 8519 (2014). Google Scholar
Jung, M., Gelato, K. A., Fernandez-Montalvan, A., Siegel, S. & Haendler, B. Targeting BET bromodomains for cancer treatment. Epigenomics7, 487–501 (2015). CASPubMed Google Scholar
Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146, 904–917 (2011). CASPubMedPubMed Central Google Scholar
Boi, M. et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin. Cancer Res.21, 1628–1638 (2015). CASPubMed Google Scholar
Amorim, S. et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol.3, e196–204 (2016). PubMed Google Scholar
Abramson, J. S. et al. BET inhibitor CPI-0610 is well tolerated and induces responses in diffuse large B-cell lymphoma and follicular lymphoma: preliminary analysis of an ongoing phase 1 study. Blood126, 1491 (2015). Google Scholar
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42, 181–185 (2010). CASPubMedPubMed Central Google Scholar
Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell23, 677–692 (2013). CASPubMedPubMed Central Google Scholar
Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood116, 5247–5255 (2010). CASPubMedPubMed Central Google Scholar
Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl. Acad. Sci. USA109, 21360–21365 (2012). CASPubMedPubMed Central Google Scholar
McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature492, 108–112 (2012). CASPubMed Google Scholar
Ribrag, V. et al. Phase 1 study of tazemetostat (EPZ-6438), an inhibitor of enhancer of zeste-homolog 2 (EZH2): Preliminary safety and activity in relapsed or refractory non-Hodgkin lymphoma (NHL) patients. Blood126, 473 (2015). Google Scholar
Younes, A. Beyond chemotherapy: new agents for targeted treatment of lymphoma. Nat. Rev. Clin. Oncol.8, 85–96 (2011). CASPubMed Google Scholar
Intlekofer, A. M. & Younes, A. Precision therapy for lymphoma—current state and future directions. Nat. Rev. Clin. Oncol.11, 585–596 (2014). CASPubMed Google Scholar
Armand, P. et al. Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma. Br. J. Haematol.163, 123–126 (2013). CASPubMed Google Scholar
Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med.6, 224ra224 (2014). Google Scholar
Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med.14, 985–990 (2008). CASPubMed Google Scholar
Faham, M. et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood120, 5173–5180 (2012). CASPubMedPubMed Central Google Scholar
Arnold, A. et al. Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms. N. Engl. J. Med.309, 1593–1599 (1983). CASPubMed Google Scholar
Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol.16, 541–549 (2015). PubMedPubMed Central Google Scholar