The dawning era of polymer therapeutics (original) (raw)
Duncan, R., Dimitrijevic, S. & Evagorou, E. G. The role of polymer conjugates in the diagnosis and treatment of cancer. S. T. P. Pharma Sciences6, 237–263 (1996). Google Scholar
Donaruma, L. G. Synthetic biologically active polymers. Progr. Polym. Sci.4, 1–25 (1974). Google Scholar
Duncan, R. in Handbook of Anticancer Drug Development (eds Budman, D., Calvert, H. & Rowinsky, E.) (Lippincott Williams & Wilkins, Baltimore, in the press). A detailed overview describing the rationale for the design and current clinical status of polymer–anticancer-drug conjugates.
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov.2, 214–221 (2003). An excellent review describing PEG–protein technology and the current clinical status of PEGylated protein pharmaceuticals. An important complementary review to the one presented here. CAS Google Scholar
Veronese, F. M. & Harris, J. M. (eds). Special issue: Peptide and protein PEGylation. Adv. Drug Deliv. Systems54, 453–609 (2002). CAS Google Scholar
Yokoyama, M. et al. Polymeric micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. J. Control Release11, 269–278 (1990). CAS Google Scholar
Kabanov, A. V., Felgner, P. L. & Seymour, L. W. Self–assembling Complexes for Gene Delivery. From Laboratory to Clinical Trial (Wiley, Chichester, 1998). Google Scholar
Fuertges, F. & Abuchowski, A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Cont. Rel.11, 139–148 (1990). CAS Google Scholar
Jatzkewitz, H. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z. Naturforsch.10, 27–31 (1955). Google Scholar
Regelson, W. & Parker, G. The routinization of intraperitoneal (intracavitary) chemotherapy and immunotherapy. Cancer Invest.4, 29–42 (1986). CASPubMed Google Scholar
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polymer Sci. Polymer Symp.51, 135–153 (1975). CAS Google Scholar
Gros, L., Ringsdorf, H. & Schupp, H. Polymeric antitumour agents on a molecular and on a cellular level? Angew. Chem. Int. Edn Engl.20, 305–325 (1981). The starting point for the development of the modern concepts of polymer–drug conjugates and polymeric micelles. Google Scholar
Davis, F. F. The origin of pegnology. Adv. Drug Deliv. Rev.54, 457–458 (2002). CASPubMed Google Scholar
Ferber, D. Gene therapy: Safer and virus-free? Science294, 1638–1640 (2001). CASPubMed Google Scholar
Niidome, T. & Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther.9, 1647–1652 (2002). CASPubMed Google Scholar
Gore, M. E. Gene therapy can cause leukaemia: no shock, mild horror but a probe. Gene Ther.10, 4 (2003). Observations indicating that retroviral gene insertion is linked with leukaemia in two children previously treated with gene therapy for severe combined immunodeficiency syndrome have refuelled interest in the design of effective nonviral vectors for gene therapy. CAS Google Scholar
Brocchini, S. & Duncan, R. in Encyclopaedia of Controlled Drug Delivery (ed. Mathiowitz, E.) 786–816 (Wiley, New York, 1999). A comprehensive review describing the many polymers that have been used to synthesize polymer–drug conjugates. Google Scholar
Rihova, B. Antibody-targeted polymer-bound drugs. Folia Microbiol.40, 367–384 (1995). CAS Google Scholar
Nori, A. et al. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconj. Chem.14, 44–50 (2003). CAS Google Scholar
Satchi, R., Connors, T. A. & Duncan, R. PDEPT: Polymer directed enzyme prodrug therapy. I. HPMA copolymer–cathepsin B and PK1 as a model combination. Brit. J. Cancer85, 1070–1076 (2001). CASPubMedPubMed Central Google Scholar
Mammen, M., Choi, S. -K. & Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl.37, 2754–2794 (1998). Google Scholar
Stiriba, S. E., Krautz, H. & Frey, H. Hyperbranched molecular nanocapsules: Comparisons of the hyperbranched architecture with the perfect linear analogue. J. Am. Chem. Soc.124, 9698–9699 (2002). CASPubMed Google Scholar
Ferruti, P. et al. A novel modification of poly(L-lysine) leading to a soluble cationic polymer with reduced toxicity and with potential as a transfection agent. Macromol. Chem. Phys.199, 2565–2575 (1998). CAS Google Scholar
Dautzenberg, H. et al. Polycationic graft copolymers as carriers for oligonucleotide delivery. Complexes of oligonucleotides with polycationic graft copolymers. Langmuir17, 3096–3102 (2001). CAS Google Scholar
Tomalia, D. A. et al. A new class of polymers — starburst-dendritic macromolecules. Polym. J.17, 117–132 (1985). The start of the dendrimer chemistry revolution. CAS Google Scholar
Frechet, J. M. J. Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties. J. Mater. Sci. Pure Appl. Chem.33, 1399–1425 (1996). Google Scholar
Frechet, J. M. J. & Tomalia, D. A. Dendrimers and Other Dendritic Polymers (Wiley, Chichester, 2001). Google Scholar
Malenfant, P. R. L. & Frechet, J. M. J. in Dendrimers and Other Dendritic Polymers (eds Frechet, J. M. J. & Tomalia, D. A.) 171–196 (Wiley, Chichester, 2001). Google Scholar
Pechar, M., Ulbrich, K. & Subr, V. Poly(ethyleneglycol) multiblock copolymer as a carrier of anticancer drug doxorubicin. Bioconj. Chem.11, 131–139 (2000). CAS Google Scholar
Mirhra, M. K. & Kobayashi, S. Star and Hyperbranched Polymers (Marcel Dekker, Basel, 1999). Google Scholar
Roy, R. Recent developments in the rational design of multivalent glycoconjugates. Top. Curr. Chem.187, 241–274 (1997). CAS Google Scholar
Chaves, F. et al. Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. J. Pept. Res.58, 307–316 (2001). CASPubMed Google Scholar
Martin, C. R. & Kohli, P. The emerging field of nanotube biotechnology. Nature Rev. Drug Discov.2, 29–37 (2003). CAS Google Scholar
Painter, P. C. & Coleman, M. C. Fundamentals of Polymer Science 2nd edn (CRC, Boca Raton, 1997). Google Scholar
Cavagnaro, J. A. Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Nature Rev. Drug Discov.1, 469–476 (2002). CAS Google Scholar
Seymour, L. W. Synthetic polymers with intrinsic anticancer activity. J. Bioact. Comp. Polymers6, 178–216 (1991). CAS Google Scholar
Breslow, D. S. Biologically active synthetic polymers. Pure Appl. Chem.46, 103–113 (1976). CAS Google Scholar
Regelson, W. Advances in intraperitoneal (intracavitary) administration of synthetic polymers for immunotherapy and chemotherapy. J. Bioact. Comp. Polymers1, 84–106 (1986). CAS Google Scholar
Mistry, C. D. & Gokal, R. Icodextrin in peritoneal dialysis: Early development and clinical use. Perit. Dial. Int.14 (Suppl. 2), 13–21 (1994). Google Scholar
Jarvan, C. M. et al. Anti-HIV type 1 activity of sulfated derivatives of dextrin against primary viral isolates of HIV type 1 in lymphocytes and monocyte-derived macrophages. AIDS Res. Hum. Retroviruses13, 875–880 (1997). Google Scholar
Shaunak, S. et al. Reduction of the viral load of HIV-1 after the intraperitoneal administration of dextrin-2-sulphate in patients with AIDS. AIDS12, 399–409 (1998). Dextrin-2–sulphate was the first sulphated polysaccharide to be administered clinically via the peritoneal route. CASPubMed Google Scholar
Thornton, M. et al. Anti-Kaposi's sarcoma and angiogenic activities of sulfated dextrins. Antimicrob. Agents Chemother.43, 2528–2533 (1999). CASPubMedPubMed Central Google Scholar
Stafford, M. K. et al. A placebo-controlled, double-blind prospective study in healthy female volunteers of dextrin sulphate gel: novel potential intravaginal virucide. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.14, 213–218 (1997). CASPubMed Google Scholar
Teitlebaum, M. S. D., Arnon, R. & Sela, M. Copaxone in experimental allergic encephalomyelitis and animal model for CMLS. Cell Biol. Life Sci.53, 24–28 (1997). Google Scholar
Johnson, K. P. et al. Copaxone disease progression. Neurology45, 1268–1276 (1995). CASPubMed Google Scholar
Slatopolsky, E. A. et al. RenaGel®, a nonabsorbed calcium- and phosphate-free phosphate binder, lowers serum phosphorus and parathyroid hormone. Kidney Int.55, 299–307 (1999). CASPubMed Google Scholar
Mandeville, W. H. & Goldberg, D. I. The sequestration of bile acids, a non-absorbed method for cholersterol reduction. A review. Curr. Pharm. Des.3, 15–28 (1997). CAS Google Scholar
Gregoriadis, G. et al. Polysialic acids: potential in drug delivery. FEBS Lett.315, 271–276 (1993). CASPubMed Google Scholar
Roy, R. et al. Synthesis and antigenic properties of sialic acid-base dendrimers. ACS Symp. Ser.560, 104–119 (1994). CAS Google Scholar
Sigal, G. B. et al. Polyacrylamides bearing pendant α-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: The strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J. Am. Chem. Soc.118, 3789–3800 (1996). CAS Google Scholar
Rihova, B. & Riha, I. Immunological problems of polymer-bound drugs. Crit. Rev. Ther. Drug Carrier Syst.1, 311–374 (1985). PubMed Google Scholar
Rihova, B. Biocompatibility of biomaterials: Haemocompatibility, immunocompatibility and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv. Drug Deliv. Rev.21, 157–176 (1996). An excellent review addressing the issues relating to the safety of polymeric materials and water soluble polymers used as drug carriers. CAS Google Scholar
Seymour, L. W. et al. Effect of molecular weight (Mω) of _N_-(2-hydroxypropyl) methacrylamide copolymers on body distributions and rate of excretion after subcutaneous, intraperitoneal and intravenous administration to rats. J. Biomed. Mat. Res.21, 1341–1358 (1987). CAS Google Scholar
Kobayashi, H. et al. Micro-MR angiography of normal and intratumoural vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J. Magn. Reson. Imaging14, 705–713 (2001). CASPubMed Google Scholar
Robinson, B. V. et al. PVP: A Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Povidone). (Lewis, Chelsea, 1990). Google Scholar
Seymour, L. W. et al. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer31, 766–770 (1995). Google Scholar
Volfova, I. et al. Biocompatibility of biopolymers. J. Bioact. Biocompat. Polymers7, 175–190 (1992). CAS Google Scholar
Rihova, B. Immunogenicity of _N_-(2-hydroxypropyl) methacrylamide copolymers. Makromol. Chem.9, 13–24.
Rihova, B. et al. Biocompatibility of _N_-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect of haematopoietic stem cells in bone marrow in vivo and effect on mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials10, 335–342 (1989). CASPubMed Google Scholar
Yeung, T. K. et al. Reduced cardiotoxicity of doxorubicin given in the form of _N_-(2-hydroxypropyl) methacrylamide conjugates: an experimental study in the rat. Cancer Chemother. Pharmacol.29, 105–111 (1991). CASPubMed Google Scholar
Duncan, R., Coatsworth, J. K. & Burtles, S. Preclinical toxicology of a novel polymeric antitumour agent: HPMA copolymer–doxorubicin (PK1). Hum. Exp. Toxicol.17, 93–104 (1998). The first paper describing a good laboratory practice (GLP) preclinical toxicological study of a polymer–drug conjugate. CASPubMed Google Scholar
Nagle, T. et al. The further evolution of biotech. Nature Rev. Drug Discov.2, 75–79 (2003). CAS Google Scholar
Brekke, O. H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nature Rev. Drug Discov.2, 52–62 (2003). CAS Google Scholar
Nucci, M. L., Shorr, D. & Abuchowski, A. The therapeutic values of poly(ethylene glycol)-modified proteins. Adv. Drug Deliv. Rev.6, 133–151 (1991). CAS Google Scholar
Delgado, C., Francis, G. E. & Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst.9, 249–304 (1992). CASPubMed Google Scholar
Monfardini, C. & Veronese, F. M. Stabilisation of substances in the circulation. Bioconj. Chem.9, 418–450 (1998). CAS Google Scholar
Francis, G. et al. Polyethylene glycol modification: Relevance to improved methodology to tumour targeting. J. Drug Target.3, 321–340 (1996). CASPubMed Google Scholar
Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev.54, 459–476 (2002). CASPubMed Google Scholar
Goodson, R. J. & Katre, N. V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology8, 343–346 (1990). CASPubMed Google Scholar
Chapman, A. P. et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnol.17, 780–783 (1999). CAS Google Scholar
Sato, H. Enzymatic procedure for site-specific pegylation of proteins. Adv. Drug Deliv. Rev.54, 487–504 (2002). CASPubMed Google Scholar
Bailon, P. & Berthold, W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm. Sci. Technol. Today1, 352–356 (1998). CAS Google Scholar
Lee, S et al. Drug delivery systems employing 1,6-elimination: Releasable poly(ethylene glycol) conjugates of proteins. Bioconj. Chem.12, 163–169 (2001). CAS Google Scholar
Levy, Y. et al. Adenosine deaminase deficiency with late onset or recurrent infections: response to treatment with polyethylene glycol modified adenosine deaminase. J. Pediatr.113, 312–317 (1988). CASPubMed Google Scholar
Graham, M. L. PEGASPARAGINASE: a review of clinical studies. Adv. Drug Deliv. Rev. (in the press).
Kinstler, O. et al. Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev.54, 477–485 (2002). CASPubMed Google Scholar
Reddy, K. R., Modi, M. W. & Pedder, S. Use of peginterferon α-2a (40KD) (Pegasys®) for the treatment of hepatitis C. Adv. Drug Deliv. Rev.54, 571–586 (2002). Google Scholar
Wang, Y. -S. et al. Structural and biological characterisation of pegylated recombinant interferon α-2b and its therapeutic implications. Adv. Drug Deliv. Rev.54, 547–570 (2002). CASPubMed Google Scholar
Bukowski, R. et al. Pegylated interferon α-2b treatment for patients with solid tumors: a phase I/II study. J. Clin. Oncol.20, 3841–3849 (2002). CASPubMed Google Scholar
De Duve, C. et al. Lysosomotropic agents. Biochem. Pharmacol.23, 2495–2531 (1974). CASPubMed Google Scholar
Huang, P. S. & Oliff, A. Drug-targeting strategies in cancer therapy. Curr. Opin. Genet. Dev.11, 104–110 (2001). CASPubMed Google Scholar
Duncan, R. & Spreafico, F. Polymer conjugates: Pharmacokinetic considerations for design and development. Clin. Pharmacokinet.27, 290–306 (1994). CASPubMed Google Scholar
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Res.6, 6387–6392 (1986). Google Scholar
Seymour, L. W. et al. Tumouritropism and anticancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Brit. J. Cancer70, 636–641 (1994). CASPubMedPubMed Central Google Scholar
Gianasi, E. et al. HPMA copolymer platinates as novel antitumor agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer35, 994–1002 (1999). CASPubMed Google Scholar
Rejmanova, P. et al. Stability in plasma and serum of lysosomally degradable oligopeptide sequences in _N_-(2-hydroxypropyl) methacrylamide copolymers. Biomaterials6, 45–48 (1985). CASPubMed Google Scholar
Duncan, R. et al. Polymers containing enzymatically degradable bonds. 7. Design of oligopeptide side chains in poly[_N_-(2-hydroxypropyl)methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol. Chem.184, 1997–2008 (1984). Google Scholar
Etrych, T. et al. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J. Control Release73, 89–102 (2001). CASPubMed Google Scholar
Kopecek, J. & Bazilova, H. Poly[_N_-(hydroxypropyl) methacrylamide]. I. Radical polymerisation and copolymerisation. Eur. Polymer J.9, 7–14 (1973). CAS Google Scholar
Sprincl, L. et al. New types of synthetic infusion solutions. III. Elimination and retention of poly[_N_-(2-hydroxypropyl) methacrylamide] in a test organism. J. Biomed. Mater. Res.10, 953–963 (1976). CASPubMed Google Scholar
Duncan, R. & Kopecek, J. Soluble synthetic polymers as potential drug carriers. Adv. Polymer Sci.57, 51–101 (1984). CAS Google Scholar
Duncan, R. Drug–polymer conjugates: potential for improved chemotherapy. Anticancer Drugs3, 175–210 (1992). CASPubMed Google Scholar
Duncan, R. et al. Preclinical evaluation of polymer-bound doxorubicin. J. Control Release19, 331–346 (1992). An important paper describing the preclinical andin vivoantitumour studies that paved the way for HPMA copolymer–doxorubicin to enter clinical testing. CAS Google Scholar
Kopecek, J. et al. HPMA copolymer–anticancer drug conjugates: design, activity and mechanism of action. Eur. J. Pharm. Biopharm.50, 61–81 (2000). CASPubMed Google Scholar
Vasey, P. et al. Phase I clinical and pharmacokinetic study of PKI (_N_-(2-hydroxypropyl)methacrylamide copolymer doxorubicin): first member of a new class of chemotherapeutic agents — drug–polymer conjugates. Clin. Cancer Res.5, 83–94 (1999). The first Phase I clinical trial evaluating a synthetic polymer–drug conjugate as an anticancer agent. CASPubMed Google Scholar
Seymour, L. W. et al. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol.20, 1668–1676 (2002). The first clinical study describing a synthetic biomimetic polymer conjugate. HPMA copolymer–doxorubicin containing additional galactose residues was designed to target the hepatocyte asialoglycoprotein receptor. CASPubMed Google Scholar
Thomson, A. H. et al. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Brit. J. Cancer81, 99–107 (1999). CASPubMedPubMed Central Google Scholar
Duncan, R. et al. Fate of _N_-(2-hydroxypropyl) methacrylamide copolymers with pendant galactosamine residues after intravenous administration to rats. Biochim. Biophys. Acta880, 62–71 (1986). CASPubMed Google Scholar
Ashwell, G. & Harford, J. Carbohydrate recognition systems of the liver. Ann. Rev. Biochem.51, 531–554 (1982). CASPubMed Google Scholar
Julyan, P. J. et al. Preliminary clinical study of the distribution of HPMA copolymer–doxorubicin bearing galactosamine. J. Control Release57, 281–290 (1999). CASPubMed Google Scholar
Meerum Terwogt, J. M. et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs12, 315–323 (2001). CASPubMed Google Scholar
Schoemaker, N. E. et al. A phase I and pharmacokinetic study of MAG-CPT, a water soluble polymer conjugate of camptothecin. Brit. J. Cancer87, 608–614 (2002). CASPubMedPubMed Central Google Scholar
Li, C. et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)–paclitaxel conjugate. Cancer Res.58, 2404–2409 (1998). An important study describing preclinical properties of PGA–paclitaxel. CASPubMed Google Scholar
Sludden, A. V. et al. Phase I and pharmacological study of CT-2103, a poly(L-glutamic acid)–paclitaxel conjugate. Proc. Am. Assoc. Cancer Res.42, 2883 (2001). Google Scholar
Sabbatini, P. et al. A phase I/II study of PG–paclitaxel (CT-2103) in patients (pts) with recurrent ovarian, fallopian tube, or peritoneal cancer. Proc. Am. Soc. Clin. Oncol.871 (2002).
Kudelka, A. P. et al. Preliminary report of a phase I study of escalating dose PG–paclitaxel (CT-2103) and fixed dose cisplatin in patients with solid tumors Proc. Am. Soc. Clin. Oncol.2146 (2002).
Schulz, J. et al. Phase II study of CT-2103 in patients with colorectal cancer having recurrent disease after treatment with a 5-fluorouracil-containing regimen. Proc. Am. Soc. Clin. Oncol.2330 (2002).
Shaffer, S. A. et al. Metabolism of poly-L-glutamic acid (PG)–paclitaxel (CT-2103); proteolysis by lysosomal cathepsin B and identification of intermediate metabolites. Proc. Am. Assoc. Cancer Res.43, 2067 (2002). Google Scholar
Denis, L. et al. A Phase I study of PEG–camptothecin (PEG–CPT) in patients with advanced solid tumours: A novel formulation for an insoluble but active agent. Proc. Am. Soc. Clin. Oncol.19, 700 (2000). Google Scholar
Greenwald, R. B. et al. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev.55, 217–250 (2003). CASPubMed Google Scholar
Rice, J. R., Stewart, D. R. & Nowotnik, D. P. Enhanced antitumour activity of a new polymer linked DACH–platinum complex. Proc. Am. Assoc. Cancer Res.43, 307 (2002). Google Scholar
Gianasi, E. et al. HPMA copolymers platinates containing dicarboxylato ligands. Preparation, characterisation and in vitro and in vivo evaluation. J. Drug Targeting10, 549–556 (2002). CAS Google Scholar
Ochi, Y. et al. DE-310, a novel macromolecular carrier for the camptothecin analogue DX-8951f[II]: Its antitumour activities in several model systems of human and murine tumours. Proc. Am. Assoc. Cancer Res.42, 748 (2001). Google Scholar
De Vries, P. et al. Optimisation of CT2106: a water soluble poly-L-glutamic acid (PG)–camptothecin conjugate with enhanced in vivo antitumor efficacy. Proc. AACR-NCI-EORTC Int. Conf.100 (2001).
Batrakova, E. V. et al. Anthracycline antibiotics non-covalently incorporated into block copolymer micelles: in vivo evaluation of anticancer activity. Br. J. Cancer74, 1545–1552 (1996). CASPubMedPubMed Central Google Scholar
Alakhov, V. et al. Block copolymer-based formulations of doxorubicin. From cell screen to clinical trials. Colloids Surf. B: Biointerfaces16, 113–134 (1999). The first micelle-based formulation of doxorubicin, and its transfer to the clinic. CAS Google Scholar
Kataoka, K. et al. Block copolymer micelles as vehicles for drug delivery. J. Control Release24, 119–132 (1993). CAS Google Scholar
Nakanishi, T. et al. Development of the polymer micelle carrier system for doxorubicin. J. Control Release74, 295–302 (2001). A description of the preclinical development of the first micelle-based doxorubicin formulation containing covalently bound drug. CASPubMed Google Scholar
Sat, Y. N. et al. Comparison of vascular permeability and enzymatic activation of the polymeric prodrug HPMA copolymer–doxorubicin (PK1) in human tumour xenografts. Proc. Am. Assoc. Cancer Res.90, 41 (1999). Google Scholar
Jain, R. K. Delivery of molecular and cellular medicine to solid tumours. Adv. Drug Deliv. Rev.46, 149–168 (2001). CASPubMed Google Scholar
Wu, J., Akaike, T. & Maeda, H. Modulation of enhanced vascular permeability in tumours by a bradykinin antagonist, a cyclooxygenase inhibitor. Cancer Res.58, 159–165 (1998). CASPubMed Google Scholar
Li, C. et al. Tumour irradiation enhances the tumour-specific distribution of poly(L-glutamic acid)–conjugated paclitaxel and its antitumour efficacy. Clin. Cancer Res.6, 2829–2834 (2000). CASPubMed Google Scholar
Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl Acad. Sci. USA92, 7297–7301 (1995). CASPubMedPubMed Central Google Scholar
Remy, J. -S. et al. Gene transfer with lipospermines and polyethylenimines. Adv. Drug Deliv. Rev.30, 85–95 (1998). CASPubMed Google Scholar
Merdan, T. et al. Intracellular processing of poly(ethyleneimine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res.19, 140–146 (2002). CASPubMed Google Scholar
Brunner, S. et al. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol. Ther.5, 80–86 (2002). CASPubMed Google Scholar
Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med.3, 362–372 (2001). CASPubMed Google Scholar
Kircheis, R. et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther.8, 28–40 (2001). CASPubMed Google Scholar
Lisziewicz, J. et al. Induction of potent human immunodeficiency virus type 1-specific T cell-restricted immunity by genetically modified dendritic cells. J. Virol.75, 7621–7628 (2001). CASPubMedPubMed Central Google Scholar
Vernejoul, F. Antitumor effect of in vivo somatostatin receptor sst2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res.62, 6124–6131 (2002). CASPubMed Google Scholar
Ferruti, P., Marchisio, M. A. & Duncan, R. Poly(amido-amine)s: Biomedical applications Macromol. Rapid Comm.23, 332–355 (2002). CAS Google Scholar
Stayton, P. S. et al. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. J. Control Release65, 203–220 (2000). CASPubMed Google Scholar
Putnam, D. et al. Polymer-based gene delivery with low cytotoxicity by a unique balance of side chain termini. Proc. Natl Acad Sci. USA98, 1200–1205 (2001). CASPubMedPubMed Central Google Scholar
Satchi-Fainaro, R. et al. PDEPT: Polymer directed enzyme prodrug therapy. II. HPMA copolymer-β-lactamase and HPMA-C-Dox as a model combination. Bioconj. Chem. (in the press).
Duncan, R. et al. Polymer–drug conjugates, PDEPT and PELT: Basic principles for design and transfer from the laboratory to the clinic. J. Control Release74, 135–146 (2001). CASPubMed Google Scholar
Gopin, A. et al. A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger. Angew. Chem. Int. Edn Engl.42, 327–332 (2003). CAS Google Scholar
Kerbel, R. & Folkman, J. Clinical translation of angiogenic inhibitors. Nature Rev. Cancer2, 727–739 (2002). CAS Google Scholar
Satchi-Fainaro, R. et al. Polymer therapeutics of angiogenesis inhibitors: HPMA copolymer–TNP-470 conjugate. Proc. Intl Symp. Controlled Rel. Bioact. Mater.29, 209–210 (2002). An excellent paper describingin vitroandin vivoactivity of the first polymer anti-angiogenic conjugate. Google Scholar
Tomlinson, R. et al. Pendent chain functionalised polyacetals that display pH-dependent degradation: A platform for the development of novel polymer therapeutics. Macromolecules35, 473–480 (2002). CAS Google Scholar
Gillies, E. R. & Frechet, J. M. J. Designing macromolecules for therapeutic applications: Polyester dendrimer–poly(ethylene oxide) 'bow-tie' hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc.124, 14137–14146 (2002). CASPubMed Google Scholar
Cloninger, M. J. Biological applications of dendrimers. Curr. Opin. Chem. Biol.6, 742–748 (2002). CASPubMed Google Scholar
Wiwattanapatapee, R. et al. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: A potential oral delivery system. Pharm. Res.17, 991–998 (2000). CASPubMed Google Scholar
Lendlein, A. & Langer, R. Biodegradable, elastic, shape-memory polymers for potential biomedical applications. Science296, 1673–1676 (2002). PubMed Google Scholar
Chanda, S. K. & Caldwell, J. S. Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov. Today8, 168–174 (2003). CASPubMed Google Scholar
Atkins, J. H. & Gershell, L. J. Selective anticancer drugs. Nature Rev. Cancer1, 645–646 (2002). Google Scholar
Jain, R. K. The next frontier of molecular medicine: Delivery of therapeutics. Nature Med.4, 655–657 (1998). CASPubMed Google Scholar
Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Drug Discov.2, 750–763 (2002). An excellent review describing ligands and technologies that have been explored for tumour targeting. Includes information on antibodies, immunoliposomes, immunotoxins and immuno–polymer conjugates. CAS Google Scholar
Iwai, K., Maeda, H. & Konno, T. Use of oily contrast medium for selective drug targeting to tumour: Enhanced therapeutic effect and X-ray image. Cancer Res.44, 2114–2121 (1984). Google Scholar
Konno, T. & Maeda, H. in Neoplsma of the Liver (eds Okada, K. & Ishak, K. G.) 343–352 (Springer, New York, 1987). Google Scholar
Maeda, H. & Konno, T. in Neocarzinostatin: The Past, Present, and Future of an Anticancer Drug (eds Maeda, H., Edo, K. & Ishida, N.) 227–267 (Springer, Berlin, 1997). Google Scholar
Jain, R. K. Delivery of molecular and cellular medicines to solid tumours. Adv. Drug Deliv. Rev.26, 71–90 (1997). CASPubMed Google Scholar
Mukherjee, A. et al. How to optimise pegvisomant treatment of acromegaly safely? Endocrine Abstracts4, OC8 (2002). Google Scholar