Hardman, J. G., Limbird, L. E. & Gilman, A. G. The Pharmacological Basis of Therapeutics (McGraw–Hill Medical, New York, 2001). Google Scholar
Kalow, W. Pharmacogenetics: Heredity and the Response to Drugs (W. B. Saunders Co., Philadelphia and London, 1962). This book was the first monograph devoted entirely to pharmacogenetics; Kalow pioneered studies of the butyrylcholinesterase genetic polymorphism. Google Scholar
Weber, W. W. Pharmacogenetics (Oxford Univ. Press, New York, 1997). Google Scholar
Price Evans, D. A. Genetic Factors in Drug Therapy: Clinical and Molecular Pharmacogenetics (Cambridge Univ. Press, Cambridge, 1993). Google Scholar
Vesell, E. S. & Page, J. G. Genetic control of drug levels in man: antipyrine. Science161, 72–73 (1968). ArticleCASPubMed Google Scholar
Wilkinson, G. R. in The Pharmacological Basis of Therapeutics (eds. Hardman, J. G., Limbird, L. E. & Gilman, A. G.) 3–29 (McGraw–Hill Medical, New York, 2001). Google Scholar
Price Evans, D. A. in Pharmacogenetics of Drug Metabolism. International Encyclopedia of Pharmacology and Therapeutics Vol. 34 (ed. Kalow, W.) 95–178 (Pergamon, New York, 1992). Google Scholar
Timbrell, J. A., Harland, S. J. & Facchini, V. Polymorphic acetylation of hydralazine. Clin. Pharmacol. Ther.28, 350–355 (1980). ArticleCASPubMed Google Scholar
Reidenberg, M. M., Drayer, D. E., Levy, M. & Warner, H. Polymorphic acetylation of procainamide in man. Clin. Pharmacol. Ther.17, 722–730 (1975). ArticleCASPubMed Google Scholar
Drayer, D. E. & Reidenberg, M. M. Clinical consequences of polymorphic acetylation of basic drugs. Clin. Pharmacol. Ther.22, 251–258 (1977). ArticleCASPubMed Google Scholar
Price Evans, D. A., Manley, K. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. BMJ2, 485–491 (1960). Article Google Scholar
Weinshilboum, R. M. & Sladek, S. L. Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet.32, 651–662 (1980). This population and family study was the original description of the thiopurine S-methyltransferase genetic polymorphism that influences thiopurine drug toxicity and efficacy. CASPubMedPubMed Central Google Scholar
Weinshilboum, R. M., Otterness, D. M. & Szumlanski, C. L. Methylation pharmacogenetics: catechol _O_-methyltransferase, thiopurine methyltransferase, and histamine _N_-methyltransferase. Annu. Rev. Pharmacol. Toxicol.39, 19–52 (1999). ArticleCASPubMed Google Scholar
Mahgoub, A., Idle, J. R., Dring, L. G., Lancaster, R. & Smith, R. L. Polymorphic hydroxylation of debrisoquine in man. Lancet2, 584–586 (1977). This population and family study was the original description of the cytochrome P450 (CYP) 2D6 genetic polymorphism, with debrisoquine as the probe drug. ArticleCASPubMed Google Scholar
Kroemer, H. K. & Eichelbaum, M. 'It's the genes, stupid'. Molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci.56, 2285–2298 (1995). ArticleCASPubMed Google Scholar
Bertilsson, L. et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin. Pharmacol. Ther.51, 388–397 (1992). ArticleCASPubMed Google Scholar
Gonzalez, F. J. et al. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus of chromosome 22. Genomics2, 174–179 (1988). ArticleCASPubMed Google Scholar
Ingelman-Sundberg, M. & Evans, W. Unraveling the functional genomics of the human CYP2D6 gene locus. Pharmacogenetics11, 553–554 (2001). ArticleCASPubMed Google Scholar
Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA90, 11825–11829 (1993). ArticleCASPubMedPubMed Central Google Scholar
Aklillu, E. et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in the Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther.278, 441–446 (1996). CASPubMed Google Scholar
US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research & Center for Devices and Radiological Health. 'Draft' Guidance for Industry: Pharmacogenomics Data Submissions. (November 2003).
Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective _N_-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol.16, 183–187 (1979). This study describes the discovery of the CYP2D6 polymorphism using sparteine rather than debrisoquine as a probe drug (see reference 18). Only later was it realized that these two drugs had identified a genetic polymorphism for the same drug-metabolizing enzyme. ArticleCASPubMed Google Scholar
Lennard, L., Van Loon, J. A. & Weinshilboum, R. M. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther.46, 149–154 (1989). ArticleCASPubMed Google Scholar
Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med.348, 529–537 (2003). ArticlePubMed Google Scholar
Schütz, E., Gummert, J., Mohr, F. & Oellerich, M. Azathioprine–induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet.341, 436 (1993). ArticlePubMed Google Scholar
Drazen, J. M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet.22, 168–170 (1999). This paper describes the clinical importance of a VNTR in the promoter of the gene encoding 5-lipoxygenase, a target for leukotriene inhibitors that are used in the treatment of asthma. ArticleCASPubMed Google Scholar
Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). This recent report, and the reference that follows describe genetic variation in a drug target, the EGFR receptor, that influences response to treatment with the anticancer drug gefitinib. ArticleCASPubMed Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Roses, A. D. Genome-based pharmacogenetics and the pharmaceutical industry. Nature Rev. Drug Discov.1, 541–549 (2002). ArticleCAS Google Scholar
Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes genomic. Nature Rev. Genet.4, 937–947 (2003). ArticleCASPubMed Google Scholar
Collins, F. S. Shattuck lecture — medical and societal consequences of the Human Genome Project. N. Engl. J. Med.341, 28–37 (1999). ArticleCASPubMed Google Scholar
Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug therapy': high expectations and disappointing achievements. Am. J. Pharmacogenomics3, 361–370 (2003). ArticlePubMed Google Scholar
Consortium, T. I. H. The International HapMap Project. Nature426, 789–796 (2003). Article Google Scholar
Bader, J. The relative power of SNPs and haplotypes as genetic markers for association tests. Pharmacogenomics2, 11–24 (2001). ArticleCASPubMed Google Scholar
Klein, T. E. & Altman, R. B. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Pharmacogenomics J.4, 1 (2004). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). ArticleCASPubMed Google Scholar
Eisenhauer, E. A. From the molecule to the clinic — inhibiting HER2 to treat breast cancer. N. Engl. J. Med.344, 841–842 (2001). ArticleCASPubMed Google Scholar
Salerno, R. A. & Lesko, L. J. Pharmacogenomic data: FDA voluntary and required submission guidance. Pharmacogenomics5, 503–505 (2004). ArticlePubMed Google Scholar
Leighton, J. K. et al. Pharmacogenomic data submissions to the FDA: non-clinical case studies. Pharmacogenomics5, 507–511 (2004). ArticlePubMed Google Scholar
Ruano, G. et al. Pharmacogenomic data submissions to the FDA: clinical pharmacology case studies. Pharmacogenomics5, 513–517 (2004). ArticlePubMed Google Scholar
Trepicchio, W. L. et al. Pharmacogenomic data submissions to the FDA: clinical case studies. Pharmacogenomics5, 519–524 (2004). ArticlePubMed Google Scholar
Bosma, P. J. et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N. Engl. J. Med.333, 1171–1175 (1995). ArticleCASPubMed Google Scholar
Monaghan, G., Ryan, M., Seddon, R., Hume, R. & Burchell, B. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet347, 578–581 (1996). ArticleCASPubMed Google Scholar
Innocenti, F. & Ratain, M. J. 'Irinogenetics' and UGT1A: from genotypes to haplotypes. Clin. Pharmacol. Ther.75, 495–500 (2004). ArticlePubMed Google Scholar
Guttmacher, A. E., Collins, F. S. & Drazen, J. M. Genomic Medicine (Johns Hopkins Univ. Press, Baltimore, 2004). Google Scholar
Terreri, A. & Spelsberg, T. C. Primer on Medical Genomics (Mayo Foundation for Medical Education, Rochester, 2004). Google Scholar
Guttmacher, A. E. & Collins, F. S. Welcome to the genomic era. N. Engl. J. Med.349, 996–998 (2003). ArticleCASPubMed Google Scholar
Clayton, E. W. Ethical, legal, and social implications of genomic medicine. N. Engl. J. Med.349, 562–569 (2003). ArticlePubMed Google Scholar
Remy, C. N. Metabolism of thiopyrimidines and thiopurines: _S_-methylation with _S_- adenosylmethionine transmethylase and catabolism in mammalian tissue. J. Biol. Chem.238, 1078–1084 (1963). CASPubMed Google Scholar
Woodson, L. C. & Weinshilboum, R. M. Human kidney thiopurine methyltransferase: purification and biochemical properties. Biochem. Pharmacol.32, 819–826 (1983). ArticleCASPubMed Google Scholar
Lennard, L. The clinical pharmacology of 6 mercaptopurine. Eur. J. Clin. Pharmacol.43, 329–339 (1992). ArticleCASPubMed Google Scholar
Szumlanski, C. et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol.15, 17–30 (1996). ArticleCASPubMed Google Scholar
Schaeffeler, E. et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics14, 407–417 (2004). ArticleCASPubMed Google Scholar
Collie-Duguid, E. S. et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics9, 37–42 (1999). ArticleCASPubMed Google Scholar
Wang, L., Sullivan, W., Toft, D. & Weinshilboum, R. Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics13, 555–564 (2003). ArticleCASPubMed Google Scholar
Tai, H. -L., Krynetski, E. Y., Schuetz, E. G., Yanishevski, Y. & Evans, W. E. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl Acad. Sci. USA94, 6444–6449 (1997). ArticleCASPubMedPubMed Central Google Scholar
Woodson, L. C., Dunnette, J. H. & Weinshilboum, R. M. Pharmacogenetics of human thiopurine methyltransferase: kidney erythrocyte correlation and immunotitration studies. J. Pharmacol. Exp. Ther.222, 174–181 (1982). CASPubMed Google Scholar
Weinshilboum, R. & Wang, L. Pharmacogenetics: inherited variation in amino acid sequence and altered protein quantity. Clin. Pharmacol. Ther.75, 253–258 (2004). ArticleCASPubMed Google Scholar
Mortimer, O. et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin. Pharmacol. Ther.47, 27–35 (1990). ArticleCASPubMed Google Scholar
Sindrup, S. H. & Brosen, K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics5, 335–346 (1995). ArticleCASPubMed Google Scholar
Perry Jr, H. M., Tan, E. M., Carmody, S. & Sakamoto, A. Relationship of acetyl transferase activity to antinuclear antibodies and toxic symptoms to hypertensive patients treated with hydralazine. J. Lab. Clin. Med.76, 1140125 (1970). Google Scholar
Woosley, R. L. et al. Effect of acetylator phenotype on the rate at which procainamide induces antinuclear and the lupus syndrome. N. Engl. J. Med.298, 1157–1159 (1978). ArticleCASPubMed Google Scholar
Cascorbi, I., Brockmoller, J., Mrozikiewicz, P. M., Muller, A. & Roots, I. Arylamine _N_-acetyltransferase activity in man. Drug Metab. Rev.31, 489–502 (1999). ArticleCASPubMed Google Scholar