Lipid II as a target for antibiotics (original) (raw)
Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science302, 1569–1571 (2003). ArticleCASPubMed Google Scholar
Harz, H., Burgdorf, K. & Holtje, J.-V. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal. Biochem.190, 120–128 (1990). ArticleCASPubMed Google Scholar
Kramer, N. E. et al. Resistance of Gram-positive bacteria to nisin is not determined by Lipid II levels. FEMS Microbiol. Lett.239, 157–161 (2004). ArticleCASPubMed Google Scholar
Stone, K. J. & Strominger, J. L. Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. J. Biol. Chem.249, 1823–1827 (1973). Google Scholar
Labischinski, H., Goodell, E. W., Goodell, A. & Hochberg, M. L. Direct proof of a 'more than single-layered' peptidoglycan architecture of Escherichia coli. J. Bacteriol.136, 723–729 (1991). Google Scholar
McCloskey, M. A. & Troy, F. A. Paramagnetic isoprenoid carrier lipids. 2. Dispersion and dynamics in lipid membranes. Biochemistry19, 2061–2066 (1980). ArticleCASPubMed Google Scholar
Chatterjee, C., Paul, M., Xie, L. L. & van der Donk, W. A. Biosynthesis and mode of action of lantibiotics. Chem. Rev.105, 633–683 (2005). An in-depth review of aspects of the synthesis and mode of action of lantibiotics. ArticleCASPubMed Google Scholar
Ekkelenkamp, M. B. et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett.579, 1917–1922 (2005). ArticleCASPubMed Google Scholar
Rogers, L. A. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol.16, 321–325 (1928). CASPubMedPubMed Central Google Scholar
Delves-Broughton, J., Blackburn, P., Evans, R. J. & Hugenholtz, J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek69, 193–202 (1996). ArticleCASPubMed Google Scholar
Linnett, P. E. & Strominger, J. L. Additional antibiotic inhibitors of peptidoglycan synthesis. J. Biol. Chem.4, 231–236 (1973). First article describing the binding of nisin to Lipid II. CAS Google Scholar
Reisinger, P., Seidel, H., Tschesche, H. & Hammes, W. P. The effect of nisin on murein synthesis. Arch. Microbiol.127, 187–193 (1980). ArticleCASPubMed Google Scholar
Sahl, H.-G. in Nisin and Novel Lantibiotics (eds. Jung, G. & Sahl, H.-G.) 347–358 (ESCOM Science, Leiden, 1991). Google Scholar
Ruhr, E. & Sahl, H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Chemother.27, 841–845 (1985). ArticleCASPubMedPubMed Central Google Scholar
Garcera, M. J., Elferink, M. G., Driessen, A. J. & Konings, W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur. J. Biochem.212, 417–422 (1993). ArticleCASPubMed Google Scholar
Breukink, E. et al. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry36, 6968–6976 (1997). ArticleCASPubMed Google Scholar
Breukink, E., Ganz, P., de Kruijff, B. & Seelig, J. Binding of nisin Z to bilayer vesicles as determined with isothermal titration calorimetry. Biochemistry39, 10247–10254 (2000). ArticleCASPubMed Google Scholar
Martin, I., Ruysschaert, J. M., Sanders, D. & Giffard, C. J. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur. J. Biochem.239, 156–164 (1996). ArticleCASPubMed Google Scholar
Brotz, H. et al. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol.30, 317–327 (1998). ArticleCASPubMed Google Scholar
Breukink, E. et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science286, 2361–2364 (1999). The authors describe how nisin exploits Lipid II in pore formation. ArticleCASPubMed Google Scholar
Matsuzaki, K., Murase, O., Fujii, N. & Miyajima, K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry34, 6521–6526 (1995). ArticleCASPubMed Google Scholar
van Kraaij, C. et al. Pore formation by nisin involves translocation of its C-terminal part across the membrane. Biochemistry37, 16033–16040 (1998). ArticleCASPubMed Google Scholar
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol.3, 238–250 (2005). ArticleCAS Google Scholar
Wiedemann, I. et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem.276, 1772–1779 (2001). ArticleCASPubMed Google Scholar
Breukink, E. et al. The orientation of nisin in membranes. Biochemistry37, 8153–8162 (1998). ArticleCASPubMed Google Scholar
Sahl, H. G., Kordel, M. & Benz, R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol.149, 120–124 (1987). ArticleCASPubMed Google Scholar
van Heusden, H. E., de Kruijff, B. & Breukink, E. Lipid II induces a transmembrane orientation of the pore forming peptide lantibiotic nisin. Biochemistry41, 12171–12178 (2002). ArticleCASPubMed Google Scholar
Wiedemann, I., Benz, R. & Sahl, H.-G. Lipid II-mediated pore formation by the peptide antibiotic nisin — a black lipid membrane study. J. Bacteriol.186, 3259–3261 (2004). ArticleCASPubMedPubMed Central Google Scholar
Breukink, E. et al. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J. Biol. Chem.278, 19898–19903 (2003). ArticleCAS Google Scholar
Bonev, B. B., Breukink, E., Swiezewska, E., de Kruijff, B. & Watts, A. Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J.18, 1862–1869 (2004). ArticleCASPubMed Google Scholar
Hasper, H. E., de Kruijff, B. & Breukink, E. Assembly and stability of nisin–Lipid II pores. Biochemistry43, 11567–11575 (2004). ArticleCASPubMed Google Scholar
Hsu, S. T. D. et al. The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Struct. Mol. Biol.11, 963–967 (2004). ArticleCAS Google Scholar
Chan, W. C. et al. Structure–activity relationships in the peptide antibiotic nisin: antibacterial activity of fragments of nisin. FEBS Lett.390, 129–132 (1996). ArticleCASPubMed Google Scholar
Arthur, M. & Courvalin, P. Genetics and mechanisms of glycopeptide resistance in Enterococci. Antimicrob. Agents Chemother.37, 1563–1571 (1993). ArticleCASPubMedPubMed Central Google Scholar
Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H.-G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting Lipid II. Antimicrob. Agents Chemother.42, 154–160 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hsu, S. T. D. et al. NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles — conformational changes are a key to antimicrobial activity. J. Biol. Chem.278, 13110–13117 (2003). ArticleCASPubMed Google Scholar
Martin, N. I. et al. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry43, 3049–3056 (2004). ArticleCASPubMed Google Scholar
Cavalleri, B., Pagani, H., Volpe, G., Selva, E. & Parenti, F. A-16686, a new antibiotic from Actinoplanes. I. Fermen-tation, isolation and preliminary physico-chemical characteristics. J. Antibiot. (Tokyo)37, 309–317 (1984). ArticleCAS Google Scholar
McCafferty, D. G. et al. Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers66, 261–284 (2002). ArticleCASPubMed Google Scholar
Walker, S. et al. Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem. Rev.105, 449–476 (2005). An in-depth review that describes aspects of the synthesis and mode of action of ramoplanin. ArticleCASPubMed Google Scholar
Cudic, P. et al. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. Proc. Natl Acad. Sci. USA99, 7384–7389 (2002). ArticleCASPubMed Google Scholar
Rew, Y., Shin, D., Hwang, I. & Boger, D. L. Total synthesis and examination of three key analogues of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. J. Am. Chem. Soc.126, 1041–1043 (2004). ArticleCASPubMed Google Scholar
Jiang, W., Wanner, J., Lee, R. J., Bounaud, P. Y. & Boger, D. L. Total synthesis of the ramoplanin A2 and ramoplanose aglycon. J. Am. Chem. Soc.125, 1877–1887 (2003). ArticleCASPubMed Google Scholar
Helm, J. S., Chen, L. & Walker, S. Rethinking ramoplanin: the role of substrate binding in inhibition of peptidoglycan biosynthesis. J. Am. Chem. Soc.124, 13970–13971 (2002). ArticleCASPubMed Google Scholar
Ciabatti, R., Maffioli, S. I., Romano, G., Candiani, G. & Panzone, G. A process for the production of ramoplanin-like amide derivatives. Chem. Abstr.139, 261566 (2003). Google Scholar
Chen, L. et al. Dissecting ramoplanin: mechanistic analysis of synthetic ramoplanin analogues as a guide to the design of improved antibiotics. J. Am. Chem. Soc.126, 7462–7463 (2004). ArticleCASPubMed Google Scholar
Cudic, P. et al. Functional analysis of the lipoglycodepsipeptide antibiotic ramoplanin. Chem. Biol.9, 897–906 (2002). ArticleCASPubMed Google Scholar
Watson, J. D. & Milner-White, E. J. A novel main-chain anion-binding site in proteins: The nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol.315, 171–182 (2002). ArticleCASPubMed Google Scholar
Watson, J. D. & Milner-White, E. J. The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins. J. Mol. Biol.315, 183–1191 (2002). ArticleCASPubMed Google Scholar
Singh, M. P. et al. Mannopeptimycins, new cyclic glycopeptide antibiotics produced by Streptomyces hygroscopicus LL-AC98: antibacterial and mechanistic activities. Antimicrob. Agents Chemother.47, 62–69 (2003). ArticleCASPubMedPubMed Central Google Scholar
He, H. et al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc.124, 9729–9736 (2002). ArticleCASPubMed Google Scholar
Dushin, R. G. et al. Hydrophobic acetal and ketal derivatives of mannopeptimycin-a and desmethylhexa-hydromannopeptimycin-a: semisynthetic glycopeptides with potent activity against Gram-positive bacteria. J. Med. Chem.47, 3487–3490 (2004). ArticleCASPubMed Google Scholar
Ruzin, A. et al. Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant Gram-positive bacteria. Antimicrob. Agents Chemother.48, 728–738 (2004). The authors show that the mannopeptimycins target Lipid II. ArticleCASPubMedPubMed Central Google Scholar
Shoji, J. et al. Isolation and characterization of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J. Antibiot. (Tokyo)45, 817–823 (1992). ArticleCAS Google Scholar
Shoji, J. et al. Isolation and characterization of katanosins A and B. J. Antibiot. (Tokyo)41, 713–718 (1988). ArticleCAS Google Scholar
Maki, H., Miura, K. & Yamano, Y. Katanosin B and plusbacin A3, inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.45, 1823–1827 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jarvis, B. Resistance to nisin and production of nisin-inactivating enzymes by several Bacillus species. J. Gen. Microbiol.47, 33–48 (1967). ArticleCASPubMed Google Scholar
Jarvis, B. & Farr, J. Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim. Biophys. Acta227, 232–240 (1971). ArticleCASPubMed Google Scholar
Froseth, B. R. & McKay, L. L. Molecular characterization of the nisin resistance region of Lactococcus-lactis subsp lactis biovar diacetylactis Drc3. Appl. Environ. Microbiol.57, 804–811 (1991). CASPubMedPubMed Central Google Scholar
Breuer, B. & Radler, F. Inducible resistance against nisin in Lactobacillus casei. Arch. Microbiol.165, 114–118 (1996). ArticleCAS Google Scholar
Severina, E., Severin, A. & Tomasz, A. Antibacterial efficacy of nisin against multidrug-resistant Gram positive pathogens. J. Antimicrob. Chemother.41, 341–347 (1998). ArticleCASPubMed Google Scholar
MaisnierPatin, S. & Richard, J. Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol. Lett.140, 29–35 (1996). ArticleCAS Google Scholar
Verheul, A., Russell, N. J., van't Hof, R., Rombouts, F. M. & Abee, T. Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl. Environ. Microbiol.63, 3451–3457 (1997). CASPubMedPubMed Central Google Scholar
Crandall, A. D. & Montville, T. J. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol.64, 231–237 (1998). CASPubMedPubMed Central Google Scholar
Davies, E. A., Falahee, M. B. & Adams, M. R. Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J. Appl. Bacteriol.81, 139–146 (1996). ArticleCASPubMed Google Scholar
Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-Alanyl-Teichoic acids in Gram-positive bacteria. Microb. Mol. Biol. Rev.67, 686–723 (2003). ArticleCAS Google Scholar
Kramer, N. E. Nisin resistance in Gram-positive bacteria. Ph.D. Thesis, Utrecht Univ. (2005).
Cao, M. & Helmann, J. D. The Bacillus subtilis extracytoplasmic-function sigma(X) factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol.186, 1136–1146 (2004). ArticleCASPubMedPubMed Central Google Scholar
Farver, D. K., Hedge, D. D. & Lee, S. C. Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann. Pharmacother.39, 863–868 (2005). ArticleCASPubMed Google Scholar
Brumfitt, W., Salton, M. R. J. & Hamilton-Miller, J. M. T. Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J. Antimicrob. Chemother.50, 731–734 (2002). ArticleCASPubMed Google Scholar
Bavin, E. M., Beach, A. S., Falconer, R. & Friedman, R. Nisin in experimental tuberculosis. The Lancet259, 127–129 (1952). Article Google Scholar
Mota-Meira, M., LaPointe, G., Lacroix, C. & Lavoie, M. C. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents Chemother.44, 24–29 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem.274, 8405–8410 (1999). Describes how the incorporation of positively charged residues (D-Ala) in the cell wall affects resistance to peptide antibiotics. ArticleCASPubMed Google Scholar
Stevens, K. A., Sheldon, B. W., Klapes, N. A. & Klaenhammer, T. R. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol.57, 3613–3615 (1991). CASPubMedPubMed Central Google Scholar
Yuan, J., Zhang, Z. Z., Chen, X. Z., Yang, W. & Huan, L. D. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol.64, 806–815 (2004). ArticleCASPubMed Google Scholar
He, H. Mannopeptimycins, a novel class of glycopeptide antibiotics active against Gram-positive bacteria. Appl. Microbiol. Biotechnol.67, 444–452 (2005). ArticleCASPubMed Google Scholar
Goldstein, B. P., Wei, J., Greenberg, K. & Novick, R. Activity of nisin against Streptococcus pneumoniae, in vitro, a mouse infection model. J. Antimicrob. Chemother.42, 277–278 (1998). ArticleCASPubMed Google Scholar
Kordel, M. & Sahl, H. G. Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin. FEMS Microbiol. Lett.34, 139–144 (1986). ArticleCAS Google Scholar
Chatterjee, S. et al. Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J. Antibiot. (Tokyo)45, 839–845 (1992). ArticleCAS Google Scholar
Kruszewska, D. et al. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother.54, 648–653 (2004). ArticleCASPubMed Google Scholar
Weiss, W. J., Murphy, T., Lenoy, E. & Young, M. In vivo efficacy and pharmacokinetics of AC98–6446, a novel cyclic glycopeptide, in experimental infection models. Antimicrob. Agents Chemother.48, 1708–1712 (2004). ArticleCASPubMedPubMed Central Google Scholar
McCormick, M. H., McGuire, J. M., Pittenger, G. E., Pittenger, R. C. & Stark, W. M. Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot. Annu.3, 606–611 (1956). CAS Google Scholar
Williamson, M. P. & Williams, D. H. Structure revision of the antibiotic vancomycin. Use of nuclear Overhauser effect difference spectroscopy. J. Am. Chem. Soc.103, 6580–6585 (1981). ArticleCAS Google Scholar
Sheldrick, G. M., Jones, P. G., Kennard, O., Williams, D. H. & Smith, G. A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature271, 223–225 (1978). Describes elucidation of the binding interactions formed between vancomycin and Lipid II. ArticleCASPubMed Google Scholar
Harris, C. M. & Harris, T. M. Structure of the glycopeptide antibiotic vancomycin. Evidence for an asparagine residue in the peptide. J. Am. Chem. Soc.104, 4293–4295 (1982). ArticleCAS Google Scholar
Anderson, J. S., Matsuhashi, M., Haskin, M. A. & Strominger, J. L. Lipid-phosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Natl Acad. Sci. USA53, 881–889 (1965). ArticleCASPubMed Google Scholar
Perkins, H. R. Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem. J.111, 195–205 (1969). ArticleCASPubMedPubMed Central Google Scholar
Chatterjee, A. N. & Perkins, H. R. Compounds formed between nucleotides related to the biosynthesis of bacterial cell wall and vancomycin. Biochem. Biophys. Res. Commun.24, 489–494 (1966). ArticleCASPubMed Google Scholar
Bordet, C. & Perkins, H. R. Iodinated vancomycin and mucopeptide biosynthesis by cell-free preparations from Micrococcus lysodeikticus. Biochem. J.119, 877–883 (1970). ArticleCASPubMedPubMed Central Google Scholar
Molinari, H., Pastore, A., Lian, L. Y., Hawkes, G. E. & Sales, K. Structure of vancomycin and a vancomycin/D-Ala-D-Ala complex in solution. Biochemistry29, 2271–2277 (1990). ArticleCASPubMed Google Scholar
Vollmerhaus, P. J., Breukink, E. & Heck, A. J. Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics. Chemistry9, 1556–1565 (2003). ArticleCASPubMed Google Scholar
Malabarba, A. & Goldstein, B. P. Origin, structure, and activity in vitro and in vivo of dalbavancin. J. Antimicrob. Chemother.55 (Suppl. 2), ii15–20 (2005). ArticleCASPubMed Google Scholar
Higgins, D. L. et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.49, 1127–1134 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mercier, R. C. & Hrebickova, L. Oritavancin: a new avenue for resistant Gram-positive bacteria. Expert Rev. Anti Infect. Ther.3, 325–332 (2005). ArticleCASPubMed Google Scholar
Barrett, M. S., Wenzel, R. P. & Jones, R. N. In vitro activity of mersacidin (M87-1551), an investigational peptide antibiotic tested against gram-positive bloodstream isolates. Diagn. Microbiol. Infect. Dis.15, 641–644 (1992). ArticleCASPubMed Google Scholar
Petersen, P. J., Wang, T. Z., Dushin, R. G. & Bradford, P. A. Comparative in vitro activities of AC98–6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against Gram-positive clinical isolates. Antimicrob. Agents Chemother.48, 739–746 (2004). ArticleCASPubMedPubMed Central Google Scholar