Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets (original) (raw)
Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem.56, 615–649 (1987). CASPubMed Google Scholar
Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Struct. Mol. Biol.9, 772–777 (2006). Google Scholar
Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev.81, 153–208 (2001). CASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature420, 629–635 (2002). CASPubMed Google Scholar
Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol.5, 886–896 (2004). CAS Google Scholar
Rocks, O., Peyker, A. & Bastiaens, P. I. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr. Opin. Cell Biol.18, 351–357 (2006). CASPubMed Google Scholar
Quimby, B. B. & Dasso, M. The small GTPase Ran: nterpreting the signs. Curr. Opin, Cell Biol.15, 338–344 (2003). CAS Google Scholar
D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol.7, 347–358 (2006). CAS Google Scholar
Bernards, A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophys. Acta1603, 47–82 (2003). CASPubMed Google Scholar
Rossman K. L., Der C. J. & Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Rev. Mol. Cell Biol.6, 167–180 (2005). CAS Google Scholar
DerMardirossian, C. & Bokoch, G. M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol.15, 356–363 (2005). CASPubMed Google Scholar
Radhika, V. & Dhanasekaran, N. Transforming G proteins. Oncogene20, 1607–1614 (2001). CASPubMed Google Scholar
Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441, 424–430 (2006). CASPubMed Google Scholar
Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer3, 11–22 (2003). CAS Google Scholar
Daub, H., Specht, K. & Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nature Rev. Drug Discov.3, 1001–1110 (2004). CAS Google Scholar
Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer2, 133–142 (2002). Google Scholar
Preudhomme, C. Non-random 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene19, 2023–2032 (2000). CASPubMed Google Scholar
Pasqualucci, L. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001). CASPubMed Google Scholar
Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol.16, 522–529 (2006). CASPubMed Google Scholar
Kleer, C. G. et al. RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res. Treat.93, 101–110 (2005). CASPubMed Google Scholar
Kamai, T. et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin. Cancer Res.9, 2632–2641 (2003). CASPubMed Google Scholar
Fidyk, N., Wang, J. B. & Cerione, R. A. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42. Biochemistry45, 7750–7762 (2006). CASPubMed Google Scholar
Lin, R., Cerione, R. A. & Manor, D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J. Biol. Chem.274, 23633–23641 (1999). CASPubMed Google Scholar
Cheng, K. W. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med.10, 1251–1256 (2004). CASPubMed Google Scholar
Croizet-Berger, K., Daumerie, C., Couvreur, M., Courtoy, P. J. & van den Hove, M. F. The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc. Natl Acad. Sci. USA99, 8277–8282 (2002). CASPubMedPubMed Central Google Scholar
He, H. et al. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr.10, 231–242 (2002). CASPubMed Google Scholar
Hashimoto, S. et al. Requirement for ARF6 in breast cancer invasive activities. Proc. Natl Acad. Sci. USA.101, 6647–6645 (2004). CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. Familial cancer associated with a polymorphism in ARLTS1. N Engl J Med.352, 1667–76 (2005). CASPubMed Google Scholar
Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem.65, 241–269 (1996). CASPubMed Google Scholar
Reid, T. S., Terry, K. L., Casey, P. J. & Beese L. S. Crystallographic analysis of CAAX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol.343, 417–433 (2004). CASPubMed Google Scholar
Ashby, M. N. CaaX converting enzymes. Curr. Opin Lipidol.9, 99–102 (1998). CASPubMed Google Scholar
Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell57, 1167–1177 (1989). CASPubMed Google Scholar
Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell100, 345–356 (2000). CASPubMed Google Scholar
McTaggart, S. J. Isoprenylated proteins. Cell Mol. Life Sci.63, 255–267 (2006). CASPubMed Google Scholar
Amor, J. C., Harrison, D. H., Kahn, R. A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature372, 704–708 (1994). CASPubMed Google Scholar
Donovan, S., Shannon, K. M. & Bollag, G. GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta1602, 23–45 (2002). CASPubMed Google Scholar
Weiss, B., Bollag, G. & Shannon, K. Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am. J. Med. Genet.89, 14–22 (1999). CASPubMed Google Scholar
Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med.355, 1345–1355 (2006). An excellent review on the role of RHEB/mTOR in the pathogenesis of tuberous sclerosis. CASPubMed Google Scholar
Dransart, E., Olofsson, B. & Cherfils, J. RhoGDIs revisited: novel roles in Rho regulation. Traffic6, 957–966 (2005). CASPubMed Google Scholar
Ivetic, A. & Ridley, A. J. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology112, 165–176 (2004). CASPubMedPubMed Central Google Scholar
Maeda, M., Matsui, T., Imamura, M., Tsukita, S. & Tsukita, S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene18, 4788–4797 (1999). CASPubMed Google Scholar
Kourlas, P. J. et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc. Natl Acad. Sci. USA97, 2145–2150 (2000). CASPubMedPubMed Central Google Scholar
Kin, Y., Li, G, Shibuya, M. & Maru, Y. The Dbl homology domain of BCR is not a simple spacer in P210BCR-ABL of the Philadelphia chromosome. J. Biol. Chem.276, 39462–39468 (2001). CASPubMed Google Scholar
Engers, R. et al. TIAM1 mutations in human renal-cell carcinomas. Int. J. Cancer88, 369–376 (2000). CASPubMed Google Scholar
Wolf, R. M. et al. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev.17, 476–487 (2003). CASPubMedPubMed Central Google Scholar
Peck, J., Douglas, G., Wu, C. H. & Burbelo, P. D. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett.528, 27–34 (2002). CASPubMed Google Scholar
Leung T. H. et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc. Natl Acad. Sci. USA102, 15207–15212 (2005). CASPubMedPubMed Central Google Scholar
MacKeigan, J. P. et al. Proteomic profiling drug-induced apoptosis in non-small cell lung carcinoma: identification of RS/DJ-1 and RhoGDIα. Cancer Res.63, 6928–6934 (2003). CASPubMed Google Scholar
Tapper, J. et al. Changes in gene expression during progression of ovarian carcinoma. Cancer Genet. Cytogenet.128, 1–6 (2001). CASPubMed Google Scholar
Jiang, W. G. et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin. Cancer Res.9, 6432–6440 (2003). CASPubMed Google Scholar
Stein, M. P., Dong, J. & Wandinger-Ness, A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv. Drug Deliv. Rev.55, 1421–1437 (2003). CASPubMed Google Scholar
Randazzo, P. A. & Hirsch, D. S. Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell Signal.16, 401–413 (2004). CASPubMed Google Scholar
Demierre, M. F., Higgins, P. D., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nature Rev. Cancer5, 930–942 (2005). CAS Google Scholar
Mo, H. & Elson, C. E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood)229, 567–585 (2004). CAS Google Scholar
Wong, W. W., Dimitroulakos, J., Minden, M. D. & Penn, L. Z. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia16, 508–511 (2002). CASPubMed Google Scholar
Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med.7, 687–692 (2001). CASPubMed Google Scholar
Rao, S. et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc. Natl Acad. Sci. USA.96, 7797–7802 (1999). CASPubMedPubMed Central Google Scholar
Hindler, K. et al. The role of statins in cancer therapy. Oncologist11, 306–315 (2006). An overview of the clinical trials evaluating the activity of statins as anticancer agents. CASPubMed Google Scholar
Kawata, S. et al. Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br. J. Cancer84, 886–891 (2001). CASPubMedPubMed Central Google Scholar
van Beek, E. et al. Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem. Biophys. Res Commun.255, 491–494 (1999). CASPubMed Google Scholar
Santini, D. et al. Mechanisms of disease: preclinical reports of antineoplastic synergistic action of bisphosphonates. Nature Clin. Pract. Oncol.3, 325–338 (2006). CAS Google Scholar
Alakangas, A. et al. Alendronate disturbs vesicular trafficking in osteoclasts. Calcif. Tissue Int.70, 40–47 (2002). CASPubMed Google Scholar
Caraglia, M. et al. Emerging anti-cancer molecular mechanisms of aminobisphosphonates. Endocr. Relat. Cancer13, 7–26 (2006). CASPubMed Google Scholar
Coxon, F. P. et al. Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone37, 349–358 (2005). CASPubMed Google Scholar
Basso, A. D., Kirschmeier, P. & Bishop, W. R. Lipid post-translational modifications. Farnesyl transferase inhibitors. J. Lipid Res.47, 15–31 (2006). CASPubMed Google Scholar
Kohl, N. E. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science260, 1934–1937 (1993). CASPubMed Google Scholar
Law, B. K., Norgaard, P. & Moses, H. L. Farnesyltransferase inhibitor induces rapid growth arrest and blocks p70s6k activation by multiple stimuli. J. Biol. Chem.275, 10796–10801 (2000). CASPubMed Google Scholar
Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem.272, 14459–14464 (1997). CASPubMed Google Scholar
Lebowitz, P. F., Casey, P. J., Prendergast, G. C. & Thissen, J. A. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J. Biol. Chem.272, 15591–15594 (1997). CASPubMed Google Scholar
Du, W., Lebowitz, P. F. & Prendergast, G. C. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell Biol.19, 1831–1840 (1999). One of the most important studies that demonstrate that geranylgeranylated RHOB has antigrowth properties, while farnesylated RHOB can be tumorigenic. CASPubMedPubMed Central Google Scholar
Chen, Z. et al. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumour growth in nude mice. J. Biol. Chem.275, 17974–17978 (2000). CASPubMed Google Scholar
Basso, A. D. et al. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J. Biol. Chem.280, 31101–31108 (2005). CASPubMed Google Scholar
Tabancay, A. P. et al. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J. Biol. Chem.278, 39921–39930 (2003). CASPubMed Google Scholar
Lackner, M. R. et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell7, 325–336 (2005). CASPubMed Google Scholar
Appels, N. M., Beijnen, J. H. & Schellens, J. H. Development of farnesyl transferase inhibitors: a review. Oncologist10, 565–578 (2005). PubMed Google Scholar
Adjei, A. A., Davis, J. N., Erlichman, C., Svingen, P. A. & Kaufmann, S. H. Comparison of potential markers of farnesyltransferase inhibition. Clin. Cancer Res.6, 2318–2325 (2000). A useful discussion of potential biomarkers of FTase inhibition. CASPubMed Google Scholar
Van Cutsem, E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol.22, 1430–1438 (2004). CASPubMed Google Scholar
Rao, S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol.22, 3950–3957 (2004). CASPubMed Google Scholar
McDonald, J. S. et al. A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest Oncology Group (SWOG 9924) study. Invest. New Drugs23, 485–487 (2005). Google Scholar
Zimmerman, T. M. et al. Dose-ranging pharmacodynamic study of tipifarnib (R115777) in patients with relapsed and refractory hematologic malignancies. J. Clin. Oncol.22, 4816–4822 (2004). CASPubMed Google Scholar
Lancet, J. E. et al. A Phase II study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood109, 1387–1394 (2007). CASPubMedPubMed Central Google Scholar
Caraglia, M., Budillon, A., Tagliaferri, P., Marra, M., Abbruzzese, A. & Caponigro, F. Isoprenylation of intracellular proteins as a new target for the therapy of human neoplasms: preclinical and clinical implications. Curr. Drug Targets6, 301–323 (2005). CASPubMed Google Scholar
Di Paolo, A. et al. Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells. Br. J. Cancer.84, 1535–1543 (2001). CASPubMed Google Scholar
Lobell, R. B. et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res.61, 8758–8768 (2001). CASPubMed Google Scholar
Morgan, M. A., Wegner, J., Aydilek, E., Ganser, A. & Reuter, C. W. Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors. Leukemia17, 1508–1520 (2003). CASPubMed Google Scholar
Reid, T. S. et al. Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein farnesyltransferase and geranygeranyltransferase-I by different binding modes. Biochemistry43, 9000–9008 (2004). CASPubMed Google Scholar
Lobell, R. B. et al. Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl: protein transferase type-I. Mol. Cancer Ther.1, 747–758 (2002). CASPubMed Google Scholar
Kelly, J. et al. The prenyltransferase inhibitor AZD3409 has anti-tumour activity in preclinical models of urothelial carcinoma. Proc. Am. Assoc. Cancer Res.46, 5962 (2005). Google Scholar
Bergo, M. O. et al. Absence of the CAAX endoprotease RCE1: effects on cell growth and transformation. Mol. Cell Biol.22, 171–181 (2002). CASPubMedPubMed Central Google Scholar
Bergo, M. O. et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest.113, 539–550 (2004). A pivotal paper showing that the inhibition of ICMT activity blocks oncogenic KRAS-induced transformation by decreasing the methylation of KRAS, HRAS and NRAS. CASPubMedPubMed Central Google Scholar
Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Rev. Cancer.5, 405–412 (2005). CAS Google Scholar
Schlitzer, M., Winter-Vann, A. & Casey, P. J. Non-peptidic, non-prenylic inhibitors of the prenyl protein-specific protease Rce1. Bioorg. Med. Chem. Lett.11, 425–427 (2001). CASPubMed Google Scholar
Chen, Y. Selective inhibition of ras-transformed cell growth by a novel fatty acid-based chloromethyl ketone designed to target Ras endoprotease. Ann. NY Acad. Sci.886, 103–108 (1999). CASPubMed Google Scholar
Wnuk, S. F. et al. Anticancer and antiviral effects and inactivation of _S_-adenosyl-L-homocysteine hydrolase with 5′-carboxaldehydes and oximes synthesized from adenosine and sugar-modified analogues. J. Med. Chem.40, 1608–1618 (1997). CASPubMed Google Scholar
Winter-Vann, A. M. et al. Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. Proc. Natl Acad. Sci. USA100, 6529–6534 (2003). CASPubMedPubMed Central Google Scholar
Winter-Vann, A. M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl Acad. Sci. USA102, 4336–4341 (2005). CASPubMedPubMed Central Google Scholar
Michaelson, D. et al. Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol. Biol. Cell16, 1606–1616 (2005). CASPubMedPubMed Central Google Scholar
Kramer, K., et al. Isoprenylcysteine carboxyl methyltransferase activity modulates endothelial cell apoptosis. Mol. Biol. Cell14, 848–857 (2003). CASPubMedPubMed Central Google Scholar
Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol.4, 343–350 (2002). An important study that provides evidence that mislocalized farnesylated or geranylgeranylated RAS (specifically NRAS and HRAS) can still signal from other locations besides the plasma membrane. CASPubMed Google Scholar
Leow, J. L., Baron, R., Casey, P. J. & Go, M. L. Quantitative structure–activity relationship (QSAR) of indoloacetamides as inhibitors of human isoprenylcysteine carboxyl methyltransferase. Bioorg. Med. Chem. Lett.17, 1025–1032 (2006). PubMedPubMed Central Google Scholar
Roberts, M. J. et al. Hydrophilic anilinogeranyl diphosphate prenyl analogues are ras function inhibitors. Biochemistry45, 15862–15872 (2006). CASPubMed Google Scholar
Morgan, M. A. Combining prenylation inhibitors causes synergistic cytotoxicity, apoptosis and disruption of RAS-to-MAP kinase signalling in multiple myeloma cells. Br. J. Haematol.130, 912–925 (2005). CASPubMed Google Scholar
Mo, H. & Elson, C. E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood)229, 567–585 (2004). CAS Google Scholar
Elson, C. E. et al. Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc. Soc. Exp. Biol. Med.221, 294–311 (1999). CASPubMed Google Scholar
Andela, V. B. Synergism of aminobisphosphonates and farnesyl transferase inhibitors on tumour metastasis. Clin. Orthop. Relat. Res.397, 228–239 (2002). Google Scholar
Budman, D. R. & Calabro, A. Zoledronic acid (Zometa) enhances the cytotoxic effect of gemcitabine and fluvastatin: in vitro isobologram studies with conventional and nonconventional cytotoxic agents. Oncology70, 147–153 (2006). CASPubMed Google Scholar
Hoover, R. R., Mahon, F. X., Melo, J. V. & Daley, G. Q. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood100, 1068–1071 (2002). CASPubMed Google Scholar
Jorgensen, H. G. et al. Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia19, 1184–1191 (2005). CASPubMed Google Scholar
Moasser, M. M. et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc. Natl Acad. Sci. USA95, 1369–1374 (1998). CASPubMedPubMed Central Google Scholar
Shi, B. et al. The farnesyl protein transferase inhibitor SCH66336 synergizes with taxanes in vitro and enhances their antitumour activity in vivo. Cancer Chemother. Pharmacol.46, 387–393 (2000). CASPubMed Google Scholar
Adjei, A. A., Davis, J. N., Bruzek, L. M., Erlichman, C. & Kaufmann, S. H. Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clin. Cancer Res.7, 1438–1445 (2001). CASPubMed Google Scholar
Doisneau-Sixou, S. F., Cestac, P., Faye, J. C., Favre, G., Sutherland, R. L. Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression. Int. J. Cancer106: 789–798 (2003). CASPubMed Google Scholar
Edamatsu, H., Gau, C. L., Nemoto, T., Guo, L., & Tamanoi, F. Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyltransferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene19, 3059–3068 (2000). CASPubMed Google Scholar
Russo, P., Malacarne, D., Falugi, C., Trombino, S. & O'Connor, P. M. RPR-115135, a farnesyltransferase inhibitor, increases 5-FU cytotoxicity in ten human colon cancer cell lines: role of p53. Int. J. Cancer100, 266–275 (2002). CASPubMed Google Scholar
Neville-Webbe, H. L., Evans, C. A., Coleman, R. E. & Holen, I. Mechanisms of the synergistic interaction between the bisphosphonate zoledronic acid and the chemotherapy agent paclitaxel in breast cancer cells in vitro. Tumour Biol.27, 92–103 (2006). CASPubMed Google Scholar
Ullen, A. et al. Additive/synergistic antitumoural effects on prostate cancer cells in vitro following treatment with a combination of docetaxel and zoledronic acid. Acta Oncol.44, 644–650 (2005). CASPubMed Google Scholar
Melisi, D. et al. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer. Endocr. Relat. Cancer12, 1051–1058 (2005). CASPubMed Google Scholar
Segawa, H. et al. Zoledronate synergises with imatinib mesylate to inhibit Ph primary leukaemic cell growth. Br. J. Haematol.130, 558–560 (2005). CASPubMed Google Scholar
Brunner, T. B., Hahn, S. M., McKenna, W. G. & Bernhard, E. J. Radiation sensitization by inhibition of activated Ras. Strahlenther Onkol.180, 731–740 (2004). PubMed Google Scholar
Brunner, T. B. et al. Farnesyltransferase inhibitors as radiation sensitizers. Int. J. Radiat. Biol.79, 569–576 (2003). CASPubMed Google Scholar
Martin, N. E. et al. A Phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clin. Cancer Res.10, 5447–5454 (2004). CASPubMed Google Scholar
Onodera, Y. et al. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. EMBO J.24, 963–973 (2005) CASPubMedPubMed Central Google Scholar
Tesmer, J. J. Hitting the hot spots of cell signaling cascades. Science.312, 377–378 (2006). An excellent review that discusses the concept of interfacial inhibition and its potential as a strategy for drug discovery. CASPubMed Google Scholar
Pommier, Y. & Cherfils, J. Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Trends Pharmacol. Sci.26, 138–145 (2005). CASPubMed Google Scholar
Zeghouf, M., Guibert, B., Zeeh, J. C. & Cherfils, J. Arf, Sec7 and Brefeldin A: a model towards the therapeutic inhibition of guanine nucleotide-exchange factors. Biochem. Soc. Trans.33, 1265–1268 (2005). CASPubMed Google Scholar
Zeeh, J. et al. Dual specificity of the interfacial inhibitor brefeldin A for arf proteins and sec7 domains. J. Biol. Chem.281, 11805–11814 (2006). CASPubMed Google Scholar
Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA.101, 7618–7622 (2004). A seminal paper describing the development of NSC23766 by a structure-based virtual screening of compounds that fit into the GEF-recognition groove centring on Trp56 of RAC1. CASPubMedPubMed Central Google Scholar
Schmidt, S., Diriong, S., Mery, J., Fabbrizio, E. & Debant, A. Identification of the first Rho GEF inhibitor, TRIPα, which targets the RhoA-specific GEF domain of Trio. FEBS Lett.523, 35–44 (2002). CASPubMed Google Scholar
Cancelas, J. A. et al. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nature Med.11, 886–891 (2005). CASPubMed Google Scholar
Kato-Stankiewicz, J. et al. Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc. Natl Acad. Sci. USA.99, 14398–14403 (2002). CASPubMedPubMed Central Google Scholar
Fritz, G. & Kaina, B. Rho GTPases: promising cellular targets for novel anticancer drugs. Curr. Cancer Drug Targets6, 1–14 (2006). CASPubMed Google Scholar
Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature375, 500–503 (1995). CASPubMed Google Scholar
Pille, J. Y. et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol. Ther.11, 267–274 (2005). CASPubMed Google Scholar
Zhang, B. Rho GDP dissociation inhibitors as potential targets for anticancer treatment. Drug Resist. Updat.9, 134–141 (2006). CASPubMed Google Scholar
Poppe, D. et al. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J. Immunol.176, 640–651 (2006). CASPubMed Google Scholar
Peterson, Y. K., Kelly, P., Weinbaum, C. A. & Casey, P. J. A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J. Biol. Chem.281, 12445–12450 (2006). This paper highlights the development of GGTase I inhibitors (GGTIs) that demonstrate selectivity for monomeric versus heterotrimeric G proteins (such as GGTI DU40). CASPubMed Google Scholar
Lewis, K. D. et al. A Phase II open-label trial of apomine (SR-45023A) in patients with refractory melanoma. Invest. New Drugs24, 89–94 (2006). CASPubMed Google Scholar
Kim, W. S. et al. Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Invest. New Drugs19, 81–83 (2001). CASPubMed Google Scholar
Knoxx, J. J. et al. A Phase I trial of prolonged administration of lovastatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or of the cervix. Eur. J. Cancer41, 523–530 (2005). Google Scholar
van der Spek, E. et al. Dose-finding study of high-dose simvastatin combined with standard chemotherapy in patients with relapsed or refractory myeloma or lymphoma. Haematologica91, 542–545 (2006). CASPubMed Google Scholar
Blumenschein, G. et al. O-082. A randomized Phase III trial comparing lonafarnib/carboplatin/paclitaxel versus carboplatin/paclitaxel (CP) in chemotherapy-naive patients with advanced or metastatic non-small cell lung cancer (NSCLC). Lung Cancer49 (Suppl. 2), 30 (2005). Google Scholar