Modelling of the blood–brain barrier in drug discovery and development (original) (raw)
Ballabh, P., Braun, A. & Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis.16, 1–13 (2004). CASPubMed Google Scholar
Huber, J. D., Egleton R. D. & Davis, T. P. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci.12, 719–725 (2001). Google Scholar
Bradbury, M. The concept of a blood–brain barrier. (Wiley, New York, 1979). Google Scholar
Pardridge, W. M. Peptide drug delivery to the brain. (Raven Press, New York,1991). Google Scholar
Pardridge, W. M. et al. Comparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier. J. Pharmacol. Exp. Ther.253, 884–891 (1990). CASPubMed Google Scholar
Ghersi-Egea, J. F., Leninger-Muller, B., Suleman, G., Siest, G. & Minn, A. Localisation of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J. Neurochem.62, 1089–1096 (1994). CASPubMed Google Scholar
El-Bacha, R. S. & Minn, A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell. Mol. Biol.45, 15–23 (1999). CASPubMed Google Scholar
Fenstermacher, J. D. et al. Relationship of capillary density to glucose utilization and blood flow in white and grey matter of the rat brain. Microvasc. Res.29, 219–220 (1985). Google Scholar
Sakurada, O. et al. Measurement of local cerebral blood flow with iodo[ 14C]antipyrine. Am. J. Physiol.234, H59–H66 (1978). CASPubMed Google Scholar
Craigie, E. H. On the relative vascularity of various parts of the central nervous system of the albino rat. J. Comp. Neurol.31, 429–464 (1920). Google Scholar
Maynard, E. A. Electron microscopy of the vascular bed of rat cerebral cortex. Am. J. Anat.100, 409–433 (1957). CASPubMed Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, Q. S. & Nedergaard, M. Signalling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003). CASPubMed Google Scholar
Pellerin, L. & Magistretti, P. J. Food for thought: challenging the dogmas. J. Cereb. Blood Flow Metab.23, 1282–1286 (2003). PubMed Google Scholar
Newman, E. A. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci.26, 536–542 (2003). CASPubMed Google Scholar
Edvinsson, L. & Hamel, E. Cerebral Blood Flow and Metabolism (eds Edvinsson, L. & Krause, D. N.) 43–67 (Lippincott, Williams and Wilkins, Philadelphia, 2002). Google Scholar
Wolburg, H. et al. Modulation of tight junction structure in blood–brain barrier endothelial cells: Effects of tissue culture, second messager and cocultured astrocytes. J. Cell Sci.107, 1347–1357 (1994). CASPubMed Google Scholar
Boado, R. J., Wang, L. & Pardridge, W. M. Enhanced expression of the blood–brain barrier GLUT1 glucose transporter gene by brain-derived factors. Brain Res. Mol. Brain Res.22, 259–267 (1994). CASPubMed Google Scholar
Raub, T. J. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol.271, C495–C503 (1996). CASPubMed Google Scholar
Rist, R. J. et al. F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res.768, 10–18 (1997). CASPubMed Google Scholar
Roux, F. et al. Regulation of γ-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cell line. J. Cell Physiol.159, 101–113 (1994). CASPubMed Google Scholar
Dehouck, B., Dehouck, M. P., Fruchard, J. C. & Cecchelli, R. Upregulation of the low density lipoprotein receptor at the blood–brain barrier:Intercommunications between brain capillary endothelial cells and astrocytes. J. Cell. Biol.126, 465–473 (1994). CASPubMed Google Scholar
DeBault, L. E. & Cancilla, P. A. γ-Glutamyltranspeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science207, 653–655 (1980). CASPubMed Google Scholar
Hayashi, Y. et al. Induction of various blood–brain barrier properties in non-neuronal endothelial cells by close apposition to co-cultured astrocytes. Glia19, 13–26 (1997). CASPubMed Google Scholar
Sobue, K. et al. Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res.35, 155–164 (1999). CASPubMed Google Scholar
Abbott, N. J. Astrocyte-endothelial interactions and blood–brain barrier permeability. J. Anat.200, 629–638 (2002). CASPubMedPubMed Central Google Scholar
Haseloff, R. F., Blasig, I. E., Bauer H. C. & Bauer, H. In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol.25, 25–39 (2005). CASPubMed Google Scholar
Pardridge, W. M., Triguero, D., Buciak, J. & Yang, J. Evaluation of cationized rat albumin as a potential blood–brain barrier drug transport vector. Exp. Neurol.255, 893–899 (1990). CAS Google Scholar
Pardridge, W. M. Drug and gene targeting to the brain with molecular Trojan horses. Nature Rev. Drug Discov.1, 131–139 (2002). CAS Google Scholar
Scherrmann, J. M. Drug delivery to brain via the blood–brain barrier. Vascul Pharmacol.38, 349–354 (2002). CASPubMed Google Scholar
Demeule, M. et al. High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J. Neurochem.83, 924–933 (2002). CASPubMed Google Scholar
Abulrob, A., Sprong, H., Van Bergen en Henegouwen, P. & Stanimirovic, D. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem.95, 1201–1214 (2005). CASPubMed Google Scholar
Benchenane, K. et al. Tissue-type plasminogen activator crosses the intact blood–brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation111, 2241–2249 (2005). CASPubMed Google Scholar
Benchenane, K. et al. Oxygen glucose deprivation switches the transport of tPA across the blood–brain barrier from an LRP-dependent to an increased LRP-independent process. Stroke36, 1065–1070 (2005). PubMed Google Scholar
Lopez-Atalaya, J. P. et al. Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood–brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke38, 1036–1043 (2007). CASPubMed Google Scholar
Brillault, J., Berezowski, V., Cecchelli, R. & Dehouck, M. P. Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J. Neurochem.83, 807–817 (2002). CASPubMed Google Scholar
Hirano, A., Kawanami, T. & Llena J. F. Electron microscopy of the blood–brain barrier in disease. Microsc. Res. Tech.27, 543–556 (1994). CASPubMed Google Scholar
Joó, F. Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood–brain barrier. Br. J. Exp. Pathol.52, 646–649 (1971). PubMedPubMed Central Google Scholar
Povlishock, J. T., Becker, D. P., Sullivan, H. G. & Miller, J. D. Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res.153, 223–239 (1978). CASPubMed Google Scholar
Ford, J. M. Modulators of multidrug resistance. Preclinical studies. Hematol. Oncol. Clin. North Am.9, 337–361 (1995). CASPubMed Google Scholar
Schinkel, A. H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell77, 491–502 (1994). CASPubMed Google Scholar
Schinkel, A. H. The physiological function of drug transporting P-glycoproteins. Semin. Cancer Biol.8, 161–170 (1997). CASPubMed Google Scholar
Schinkel, A. H. & Jonker, J. W. Mammalian drug efflux transporters of the ATP-binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev.55, 3–29 (2003). CASPubMed Google Scholar
Kruh, G. D., Guo, Y., Hopper-Borge, E., Belinsky, M. G. & Chen, Z. S. ABCC10, ABCC11 and ABCC12. Pflugers Arch. 26 Jul 2006 [Epub ahead of print]. Google Scholar
Zhang, Y. Schuetz, J. D., Elmquist, W. F. & Miller, D. W. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. JPET311, 449–455 (2004). CAS Google Scholar
Soontornmalai, A., Vlaming, M. L. & Fritschy, J. M. Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood–brain barrier. Neurosci.138, 159–169 (2006). CAS Google Scholar
Sugarawa, I., Hamada, H., Tsuruo, T. & Mori, S. Specialized localization of P-glycoprotein recognized by MRK16 monoclonal antibody in endothelial cells of the brain and the spinal cord. Jpn. J. Cancer Res.81, 727–730 (1990). Google Scholar
Tsuji, A. et al. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci.51, 1427–1437 (1992). CASPubMed Google Scholar
Stewart, P. A., Beliveau, R. & Rogers, K. A. Cellular localization of P-glycoprotein in brain versus gonadal capillaries. J. Histochem. Cytochem.44, 679–685 (1996). CASPubMed Google Scholar
Beaulieu, E., Demeule, M., Ghitescu, L. & Béliveau, R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem. J.326, 539–544 (1997). CASPubMedPubMed Central Google Scholar
Scherrmann, J. M. Expression and function of multidrug resistance transporters at the blood–brain barriers. Expert Opin Drug Metab. Toxicol.1, 233–246 (2005). CASPubMed Google Scholar
Dallas, S., Miller, D. S. & Bendayan, R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev.58, 140–161 (2006). CASPubMed Google Scholar
Seetharaman, S., Barrand, M. A., Maskell, L. & Scheper, R. J. Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem.70, 1151–1159 (1998). CASPubMed Google Scholar
Gutmann, H., Fricker, G., Drewe, J., Toeroek, M. & Miller, D. S. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol. Pharmacol.56, 383–389 (1999). CASPubMed Google Scholar
Sugiyama, Y., Kusuhara, H. & Suzuki, H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain. J. Control Release62, 179–186 (1999). CASPubMed Google Scholar
Fenart, L. et al. Inhibition of P-glycoprotein: rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm. Res.15, 993–1000 (1998). CASPubMed Google Scholar
Berezowski, V., Landry, C., Dehouck, M. P., Cecchelli, R. & Fenart, L. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res.1018, 1–9 (2004). CASPubMed Google Scholar
Borst, P., Evers, R., Kool, M. & Wijnholds, J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl Cancer Inst.92, 1295–1302 (2000). CASPubMed Google Scholar
Loscher, W. & Potschka, H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx.2, 86–98 (2005). PubMedPubMed Central Google Scholar
Evers, R. et al. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest.97, 1211–1218 (1996). CASPubMedPubMed Central Google Scholar
Kusuhara, H. & Sugiyama, Y. Active efflux across the blood–brain barrier:carrier family. NeuroRx.2, 73–85 (2005). PubMedPubMed Central Google Scholar
Eisenblatter, T., Huwel, S. & Galla, H. J. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood–brain barrier. Brain Res.971, 221–231 (2003). CASPubMed Google Scholar
Abbott, N. J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov. Today: Technol.1, 407–416 (2004). CAS Google Scholar
Reichel, A. The role of blood–brain barrier studies in the pharmaceutical industry. Curr. Drug Metab.7, 183–203 (2006). CASPubMed Google Scholar
Joó, F. The blood–brain barrier in vitro: ten years of research on microvessels isolated from the brain. Neurochem. Int.7, 1–25 (1985). PubMed Google Scholar
Muruganandam, A., Herx, L. M., Monette, R., Durkin, J. P. & Stanimirovic, D. B. Development of immortalized cerebromicrovascular endothelial cell line as an in vitro model of the human blood–brain barrier. FASEB J.11, 1187–1197 (1997). CASPubMed Google Scholar
Weksler, B. B. et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J.19, 1872–1874 (2005). CASPubMed Google Scholar
Kannan, R., Chakrabarti, R., Tang, D., Kim, K. J. & Kaplowitz, N. GSH transport in human cerebrovascular endothelial cells and human astrocytes: Evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res.852, 374–382 (2000). CASPubMed Google Scholar
Demeuse, P. et al. Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood–brain barrier. J. Neurosci. Methods121, 21–31 (2002). PubMed Google Scholar
Perrière, N. et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res.1150, 1–13 (2007). PubMed Google Scholar
Coisne, C., et al. Development and characterization of a mouse syngenic in vitro blood–brain barrier model: A new tool to examine inflammatory events on cerebral endothelium. Lab Invest.85, 735–746 (2005). Google Scholar
Méresse, S. et al. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J. Neurochem.53, 1363–1371 (1989). PubMed Google Scholar
Dehouck, M. P., Méresse, S., Delorme, P., Fruchard, J. C. & Cecchelli, R. An easier, reproducible and mass production method to study the blood–brain barrier in vitro. J. Neurochem.54, 1798–1801 (1990). One of the earliest papers describing a reproducible method for developing a BBB co-culture model with brain endothelial and glial cells that could be used in the pharmaceutical industry. Besides its use as BBB permeability and transport screen, the model has also been used in mechanistic studies in physiological and pathological conditions. CASPubMed Google Scholar
Cecchelli, R. et al. In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev.36, 165–178 (1999). CASPubMed Google Scholar
Rubin, L. L. et al. A cell culture model of the blood–brain barrier. J. Cell Biol.115, 1725–1735 (1991). CASPubMed Google Scholar
O´Donnell, M. E., Martinez, A. & Sun, D. Cerebral microvascular endothelial cell NA-K-Cl co-transport: Regulation by astrocyte-conditioned medium. Am. J. Physiol.268, C747–C754 (1995). Google Scholar
Hurst, R. D. & Fritz, I. B Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier, J. Cell Physiol.167, 81–88 (1996). CASPubMed Google Scholar
Boveri, M. et al. Induction of blood–brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia51, 187–198 (2005). PubMed Google Scholar
Hoheisel, D. et al. Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun.247, 312–315 (1998). CASPubMed Google Scholar
Franke, H., Galla, H. J. & Beuckmann, C. T. An improved low-permeability _in vitro_-model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res.818, 65–71, (1999). CASPubMed Google Scholar
Zhang, Y. et al. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab. Dispos.34, 1935–1943 (2006). CASPubMed Google Scholar
Arthur, F. E., Shivers, R. R. & Bowman, P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev. Brain Res.36, 155–159 (1987). Google Scholar
Descamps, L., Coisne, C., Dehouck, B., Cecchelli, R. & Torpier, G. Protective effect of glial cells against lipopolysaccharide-mediated blood–brain barrier injury. Glia42, 46–58 (2003). PubMed Google Scholar
Roux, F. & Couraud, P. O. Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol. Neurobiol.25, 41–58 (2005). PubMed Google Scholar
Förster, C. et al. Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J. Physiol.565, 475–486 (2005). PubMedPubMed Central Google Scholar
Scism, J. L. et al. Evaluation of an in vitro coculture model for the blood–brain barrier: Comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources. In Vitro Cell Dev. Biol. Anim.35, 580–592 (1999). CASPubMed Google Scholar
Dejana, E. Endothelial cell–cell junctions: happy together. Nature Rev. Mol. Cell Biol.5, 261–270, (2004). CAS Google Scholar
Vorbrodt, A. W. & Dobrogowska, D. H. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view. Brain Res. Brain Res. Rev.42, 221–242 (2003). CASPubMed Google Scholar
Lundquist, S. et al. Prediction of drug transport through the blood–brain barrier in vivo: a comparison between two in vitro cell models. Pharm. Res.19, 976–981 (2002). CASPubMed Google Scholar
Franzén, B. et al. Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-α. Mol. Brain Res.115, 130–146 (2003). References 90–96 demonstrate efforts in identifying genes and proteins at the brain endothelium that could be potential therapeutic targets and highlight differences between peripheral and brain endothelium. PubMed Google Scholar
Shusta, E. V., Boado, R. J., Mathern, G. W. & Pardridge, W. M. Vascular genomics of the human brain. J. Cereb. Blood Flow Metab.22, 245–252 (2002). CASPubMed Google Scholar
Li, J. Y., Boado, R. J. & Pardridge, W. M. Blood–brain barrier genomics. J. Cereb. Blood Flow Metab.21, 61–68 (2001). CASPubMed Google Scholar
Li, J. Y., Boado, R. J. & Pardridge, W. M. Rat blood–brain barrier genomics. II. J. Cereb. Blood Flow Metab.22, 1319–1326 (2002). CASPubMed Google Scholar
Shusta, E. V., Boado, R. J. & Pardridge, W. M. Vascular proteomics and subtractive antibody expression cloning. Mol. Cell. Proteomics1, 75–82 (2002). CASPubMed Google Scholar
Shusta, E. V., Zhu, C., Boado, R. J. & Pardridge, W. M. Subtractive expression cloning reveals high expression of CD46 at the blood–brain barrier. J. Neuropathol. Exp. Neurol.61, 597–604 (2002). CASPubMed Google Scholar
Shusta, E. V., Li J. Y., Boado, R. J. & Pardridge, W. M. The Ro52/SS-A autoantigen has elevated expression at the brain microvasculature. Neuroreport14, 1861–1865 (2003). CASPubMed Google Scholar
Stanness, K. A. et al. Morphological and functional characterisation of an in vitro blood–brain barrier model. Brain Res.771, 329–342 (1997). CASPubMed Google Scholar
Cucullo, L., et al. Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia48, 505–516 (2007). CASPubMed Google Scholar
Leybaert, L. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J. Cereb. Blood Flow Metab.25, 2–16 (2005). CASPubMed Google Scholar
Berezowski, V. et al. Transport screening of drug cocktails through an in vitro blood–brain barrier: is it a good strategy for increasing the throughput of the discovery pipeline? Pharm Res.21, 756–760 (2004). CASPubMed Google Scholar
Dehouck, B. et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol.138, 877–889 (1997). One of the first papers describing trancytosis of LDL across the BBBin vitro. CASPubMedPubMed Central Google Scholar
Cipolla, M. J., Crete, R., Vitullo, L. & Rix, R. D. Transcellular transport as a mechanism of blood–brain barrier disruption during stroke. Front. Biosci.9, 777–785 (2004). CASPubMed Google Scholar
Kaur, C., Sivakumar, V., Zhang, Y. & Ling, E. A. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia54, 826–839 (2006). CASPubMed Google Scholar
Spencer, B. J. & Verma, I. M. Targeted delivery of proteins across the blood–brain barrier. Proc. Natl Acad. Sci. USA104, 7594–7599 (2007). CASPubMed Google Scholar
Enerson, B. E. & Drewes, L. R. The rat blood–brain barrier transcriptome. J. Cereb. Blood Flow Metab.26, 959–973 (2006). CASPubMed Google Scholar
Fiala, M. et al. Amyloid-β induces chemokine secretion and monocyte migration across a human blood–brain barrier. Mol. Med.4, 480–489 (1998). CASPubMedPubMed Central Google Scholar
Giri, R. et al. β-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am. J. Physiol. Cell Physiol.279, C1772–C1781 (2000). CASPubMed Google Scholar
Poduslo, J. F., Curran, G. L., Wengenack, T. M., Malester, B. & Duff, K. Permeability of proteins at the blood–brain barrier in the normal adult mouse and the double transgenic mouse model of Alzheimer´s disease. Neurobiol. Dis.8, 555–567 (2001). CASPubMed Google Scholar
Ujiie, M., Dickstein, D. L., Carlow, D. A. & Jefferies, W. A. Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation10, 463–470 (2003). CASPubMed Google Scholar
Iadecola, C. Atherosclerosis and neurodegeneration: unexpected conspirators in Alzheimer's dementia. Arterioscler. Thromb. Vasc. Biol.23, 1951–1953 (2003). CASPubMed Google Scholar
Thomas, T., Thomas, G., McLendon, C., Sutton, T. & Mullan, M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature380, 168–171 (1996). An important paper linking Aβ to vascular reactivity by free radicals. CASPubMed Google Scholar
Paris, D. et al. Vasoactive effects of Aβ in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer's disease: role of inflammation. Neurol. Res.25, 642–651 (2003). CASPubMed Google Scholar
Iadecola, C. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neurosci.2, 157–161 (1999). An interesting paper showing that vascular oxidative stress alters endothelium-dependent cerebral blood-flow responses in mice overexpressing amyloid precursor protein. CASPubMed Google Scholar
DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science295, 2264–2267 (2002). References 111–114 demonstrate transport of Aβ across the blood–brain barrier from blood-to-brain and from brain-to-blood indicating the importance of kinetic and dynamic considerations in the study of Aβ accumulation in brain. CASPubMed Google Scholar
Minagar, A. & Alexander, J. S. Blood–brain barrier disruption in multiple sclerosis. Mult. Scler.9, 540–549 (2003). CASPubMed Google Scholar
Veldhuis, W. B. et al. Interferon-β prevents cytokine-induced neutrophil infiltration and attenuates blood–brain barrier disruption. J. Cereb. Blood Flow Metab.23, 1060–1069 (2003). CASPubMed Google Scholar
Dallasta, L. M. et al. Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol.155, 1915–1927 (1999). CASPubMedPubMed Central Google Scholar
Davies, D. C. Blood–brain barrier breakdown in septic encephalopathy and brain tumors. J. Anat.200, 639–646 (2002). CASPubMedPubMed Central Google Scholar
Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nature Rev. Neurosci.4, 399–415 (2003). CAS Google Scholar
Gasche, Y. et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischaemia in mice: a possible role in blood–brain barrier dysfuntion. J. Cereb. Blood Flow Metab.19, 1020–1028 (1999). CASPubMed Google Scholar
Huber, J. D. et al. Inflammatory pain alters blood–brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart Circ. Physiol.280, H1241–H1248 (2001). CASPubMed Google Scholar
Weidenfeller, C., Svendsen, C. N., Shusta, E. V. Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J. Neurochem.101, 555–565 (2007). CASPubMedPubMed Central Google Scholar
Zhang, Z. G., Zhang, L., Jiang, Q. & Chopp, M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischaemia in the adult mouse. Circ. Res.90, 284–288 (2002). CASPubMed Google Scholar