Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges (original) (raw)
Pirmohamed, M. & Park, B. K. Genetic susceptibility to adverse drug reactions. Trends Pharmacol. Sci.22, 298–305 (2001). Review of adverse drug reaction (ADR) classifications and more common ADRs (in receptors, enzymes, transporters and immune response genes) with associations to genetic susceptibility. CASPubMed Google Scholar
Lazarou, J., Pomeranz, B. H. & Corey, P. N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA279, 1200–1205 (1998). Frequently cited meta-analysis of 39 prospective studies from US hospitals that determines the incidence of adverse drug reactions in US hospitals. CASPubMed Google Scholar
Severino, G. & Del Zompo, M. Adverse drug reactions: role of pharmacogenomics. Pharmacol. Res.49, 363–373 (2004). CASPubMed Google Scholar
Pasanen, M. K., Neuvonen, M., Neuvonen, P. J. & Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Gen.16, 873–879 (2006). CAS Google Scholar
Giacomini, K. M. et al. When good drugs go bad. Nature446, 975–977 (2007). An article highlighting the need for a global research consortium to study mechanisms and risk factors that contribute to severe adverse drug reactions. CASPubMed Google Scholar
Molokhia, M. & McKeigue, P. EUDRAGENE: European collaboration to establish a case-control DNA collection for studying the genetic basis of adverse drug reactions. Pharmacogenomics7, 633–638 (2006). CASPubMed Google Scholar
Weatherall, D. J. Single gene disorders or complex traits: lessons from the thalassaemias and other monogenic diseases. BMJ321, 1117–1120 (2000). CASPubMedPubMed Central Google Scholar
Beutler, E. Glucose-6-phosphate dehydrogenase deficiency. N. Engl. J. Med.324, 169–174 (1991). CASPubMed Google Scholar
Barta, C. et al. Analysis of mutations in the plasma cholinesterase gene of patients with a history of prolonged neuromuscular block during anesthesia. Mol. Genet. Metab.74, 484–488 (2001). CASPubMed Google Scholar
Lennard, L., Lilleyman, J. S., Van Loon, J. & Weinshilboum, R. M. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet336, 225–229 (1990). CASPubMed Google Scholar
Center for Drug Evaluation and Research. Improving publich health through human drugs. FDA (online) 2005.
Tufts Center for the Study of Drug Development. Drug safety withdrawals in the US not linked to speed of FDA approval. Tufts University (online) 2005.
Committee on the assessment of the US drug safety. The Future of Drug Safety: Promoting and Protecting the Health of the Public (The National Academies Press, Washington DC, 2006).
Hennessy, S. & Strom, B. L. PDUFA reauthorization — drug safety's golden moment of opportunity? N. Engl. J. Med.356, 1703–1704 (2007). CASPubMed Google Scholar
DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ.22, 151–185 (2003). PubMed Google Scholar
Phillips, K. A., Veenstra, D. L., Oren, E., Lee, J. K. & Sadee, W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA286, 2270–2279 (2001). A comprehensive, systematic review of the literature on 27 frequently cited drugs in ADRs and the role of potential role of pharmacogenomics in reducing ADRs. CASPubMed Google Scholar
Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet359, 1121–1122 (2002). CASPubMed Google Scholar
Chung, W. H. et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature428, 486 (2004). CASPubMed Google Scholar
Watkins, P. B. Idiosyncratic liver injury: challenges and approaches. Toxicol. Pathol.33, 1–5 (2005). A paper that outlines the clinical presentation of drug-induced liver injury with a special focus on severe drug-induced liver injury (DILI). To fully understand DILI, the author highlights the need for pharmacogenetic studies as well as focused and well-controlled phenotype/genotype studies of patients who have survived this type of injury. CASPubMed Google Scholar
Meier, Y. et al. Incidence of drug-induced liver injury in medical inpatients. Eur. J. Clin. Pharmacol.61, 135–143 (2005). PubMed Google Scholar
Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med.137, 947–954 (2002). PubMed Google Scholar
Bissell, D. M., Gores, G. J., Laskin, D. L. & Hoofnagle, J. H. Drug-induced liver injury: mechanisms and test systems. Hepatology33, 1009–1013 (2001). CASPubMed Google Scholar
Maddrey, W. C. Drug-induced hepatotoxicity: 2005. J. Clin. Gastroenterol.39, S83–S89 (2005). PubMed Google Scholar
Watkins, P. B. & Whitcomb, R. W. Hepatic dysfunction associated with troglitazone. N. Engl. J. Med.338, 916–917 (1998). CASPubMed Google Scholar
Zimmerman, H. J. Hepatotoxicity the Adverse Effects of Drugs and Other Chemicals on the Liver (Lippincott Williams & Wilkins, Baltimore, 1999). Google Scholar
Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nature Rev. Drug Discov.4, 489–499 (2005). Examines the current understanding of the pathophysiology of idiosyncratic drug hepatotoxicity, outlines its clinical signatures and the role of monitoring in prevention. CAS Google Scholar
Hoofnagle, J. H. Drug-induced liver injury network (DILIN). Hepatology.40, 773 (2004). A description of the drug-induced liver injury network as a network to advance understanding of drug-induced liver disease. PubMed Google Scholar
Lucena, M. I., Camargo, R., Andrade, R. J., Perez-Sanchez, C. J. & Sanchez De La Cuesta, F. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology.33, 123–130 (2001). CASPubMed Google Scholar
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet344, 1383–1389 (1994).
Shepherd, J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland coronary prevention study group. N. Engl. J. Med.333, 1301–1307 (1995). CASPubMed Google Scholar
Yee, H. S. & Fong, N. T. Atorvastatin in the treatment of primary hypercholesterolemia and mixed dyslipidemias. Ann. Pharmacother.32, 1030–1043 (1998). CASPubMed Google Scholar
Thompson, P. D., Clarkson, P. & Karas, R. H. Statin-associated myopathy. JAMA289, 1681–1690 (2003). CASPubMed Google Scholar
McKenney, J. M., Davidson, M. H., Jacobson, T. A. & Guyton, J. R. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am. J. Cardiol97, 89–94 (2006). This article summarizes the final conclusions of the national lipid association (NLA) statin safety task force, based on a review and independent research of new drug application information, FDA adverse event reporting system (AERS) data, cohort and clinical trial results, analysis of administrative claims database information and the assessment of its four expert panels, which focused on issues of statin safety with regard to liver, muscle, renal and neurologic systems. Google Scholar
McClure, D. L., Valuck, R. J., Glanz, M., Murphy, J. R. & Hokanson, J. E. Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J. Clin. Epidemiol.60, 812–818 (2007). PubMed Google Scholar
Thompson, P. D., Clarkson, P. M. & Rosenson, R. S. An assessment of statin safety by muscle experts. Am. J. Cardiol97, 69-76 (2006).
Phillips, P. S. et al. Statin-associated myopathy with normal creatine kinase levels. Ann. Intern. Med.137, 581–585 (2002). PubMed Google Scholar
Pasternak, R. C. et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation106, 1024–1028 (2002). PubMed Google Scholar
Chan, J., Hui, R. L. & Levin, E. Differential association between statin exposure and elevated levels of creatine kinase. Ann. Pharmacother.39, 1611–1616 (2005). CASPubMed Google Scholar
Wilke, R. A., Moore, J. H. & Burmester, J. K. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet. Gen.15, 415–421 (2005). Association study using a retrospective cohort to determine whether there is an association of genetic variants ofCYP3Awith atorvastatin-induced muscle-damage. CAS Google Scholar
Draeger, A. et al. Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J. Pathol.210, 94–102 (2006). CASPubMed Google Scholar
Graham, D. J. et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA292, 2585–2590 (2004). CASPubMed Google Scholar
Davidson, M. H. Rosuvastatin safety: lessons from the FDA review and post-approval surveillance. Expert Opin. Drug Saf.3, 547–557 (2004). CASPubMed Google Scholar
Ferdinand, K. C. Rosuvastatin: a risk-benefit assessment for intensive lipid lowering. Expert Opin. Pharmacother.6, 1897–1910 (2005). CASPubMed Google Scholar
Lennernas, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet42, 1141–1160 (2003). PubMed Google Scholar
Gibson, D. M. et al. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J. Clin. Pharmacol.36, 242–246 (1996). CASPubMed Google Scholar
Worz, C. R. & Bottorff, M. The role of cytochrome P450-mediated drug–drug interactions in determining the safety of statins. Expert Opin. Pharmacother.2, 1119–1127 (2001). CASPubMed Google Scholar
Neuvonen, P. J., Kantola, T. & Kivisto, K. T. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin. Pharmacol. Ther.63, 332–341 (1998). CASPubMed Google Scholar
Bullen, W. W., Miller, R. A. & Hayes, R. N. Development and validation of a high-performance liquid chromatography tandem mass spectrometry assay for atorvastatin, ortho-hydroxy atorvastatin, and para-hydroxy atorvastatin in human, dog, and rat plasma. J. Am. Soc. Mass Spectrom.10, 55–66 (1999). CASPubMed Google Scholar
Nordin, C., Dahl, M. L., Eriksson, M. & Sjoberg, S. Is the cholesterol-lowering effect of simvastatin influenced by CYP2D6 polymorphism? Lancet350, 29–30 (1997). CASPubMed Google Scholar
Mulder, A. B. et al. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin. Pharmacol. Ther.70, 546–551 (2001). CASPubMed Google Scholar
Geisel, J., Kivisto, K. T., Griese, E. U. & Eichelbaum, M. The efficacy of simvastatin is not influenced by CYP2D6 polymorphism. Clin. Pharmacol. Ther.72, 595–596 (2002). PubMed Google Scholar
Mulder, A. B., van den Bergh, F. A. & Vermes, I. Response to “The efficacy of simvastatin is not influenced by CYP2D6 polymorphism” by Geisel et al. Clin. Pharmacol. Ther.73, 475 (2003). CASPubMed Google Scholar
Prueksaritanont, T., Ma, B. & Yu, N. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol.56, 120–124 (2003). CASPubMedPubMed Central Google Scholar
Kirchheiner, J. et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (–)-3S, 5R-fluvastatin and (+)-3R, 5S-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther.74, 186–194 (2003). CASPubMed Google Scholar
Kirchheiner, J., Roots, I., Goldammer, M., Rosenkranz, B. & Brockmoller, J. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet44, 1209–1225 (2005). CASPubMed Google Scholar
Mauro, V. F. Clinical pharmacokinetics and practical applications of simvastatin. Clin. Pharmacokinet24, 195–202 (1993). CASPubMed Google Scholar
Prueksaritanont, T. et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab. Dispos.30, 1280–1287 (2002). CASPubMed Google Scholar
Jemal, M., Ouyang, Z., Chen, B. C. & Teitz, D. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom.13, 1003–1015 (1999). CASPubMed Google Scholar
Prueksaritanont, T. et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J. Pharmacol. Exp. Ther.301, 1042–1051 (2002). CASPubMed Google Scholar
Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther.311, 228–236 (2004). CASPubMed Google Scholar
Schneck, D. W. et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther.75, 455–463 (2004). CASPubMed Google Scholar
Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther.73, 554–565 (2003). CASPubMed Google Scholar
Mwinyi, J., Johne, A., Bauer, S., Roots, I. & Gerloff, T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther.75, 415–421 (2004). CASPubMed Google Scholar
Niemi, M., Pasanen, M. K. & Neuvonen, P. J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther.80, 356–366 (2006). CASPubMed Google Scholar
Wilke, R. A., Reif, D. M. & Moore, J. H. Combinatorial pharmacogenetics. Nature Rev. Drug Discovery4, 911–918 (2005). A review proposing the application of multifactor dimensionality reduction to defining gene–gene interactions directed toward the characterization of drug-treatment outcomes, especially targeting polymorphic drug-metabolizing enzymes and their role in adverse drug reactions. CAS Google Scholar
Ishikawa, C. et al. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin. J. Hum. Genet.49, 582–585 (2004). PubMed Google Scholar
Morimoto, K. et al. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab. Pharmacokinet19, 453–455 (2004). CASPubMed Google Scholar
Fiegenbaum, M. et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. Ther.78, 551–558 (2005). CASPubMed Google Scholar
Vladutiu, G. D. et al. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve34, 153–162 (2006). CASPubMed Google Scholar
Oh, J., Ban, M. R., Miskie, B. A., Pollex, R. L. & Hegele, R. A. Genetic determinants of statin intolerance. Lipids Health Dis.6, 7 (2007). PubMedPubMed Central Google Scholar
Roden, D. M., Woosley, R. L. & Primm, R. K. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am.Heart J.111, 1088–1093 (1986). CASPubMed Google Scholar
Soyka, L. F., Wirtz, C. & Spangenberg, R. B. Clinical safety profile of sotalol in patients with arrhythmias. Am.J. Cardiol.65, 74–81 (1990). Google Scholar
Stambler, B. S. et al. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation. Circulation94, 1613–1621 (1996). CASPubMed Google Scholar
Torp-Pedersen, C. et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N. Engl. J. Med.341, 857–865 (1999). CASPubMed Google Scholar
Torp-Pedersen, C., Moller, M., Kober, L. & Camm, A. J. Dofetilide for the treatment of atrial fibrillation in patients with congestive heart failure. Eur. Heart J.21, 1204–1206 (2000). CASPubMed Google Scholar
Kay, G. N., Plumb, V. J., Arciniegas, J. G., Henthorn, R. W. & Waldo, A. L. Torsades de pointes: The long-short initiating sequence and other clinical features: Observations in 32 patients. J. Am. Coll. Cardiol.2, 806–817 (1983). CASPubMed Google Scholar
Viskin, S., Justo, D., Halkin, A. & Zeltser, D. Long QT syndrome caused by noncardiac drugs. Prog. Cardiovasc. Dis.45, 415–427 (2003). CASPubMed Google Scholar
Dangman, K. H. & Hoffman, B. F. In vivo and in vitro antiarrhythmic and arrhythmogenic effects of _N_-acetyl procainamide. J. Pharmacol. Exp. Ther.217, 851–862 (1981). CASPubMed Google Scholar
Strauss, H. C., Bigger, J. T. & Hoffman, B. F. Electrophysiological and beta-receptor blocking effects of MJ 1999 on dog and rabbit cardiac tissue. Circ. Res.26, 661–678 (1970). CASPubMed Google Scholar
Antzelevitch, C. et al. Heterogeneity within the ventricular wall: electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ. Res.69, 1427–1449 (1991). CASPubMed Google Scholar
Davidenko, J. M., Cohen, L., Goodrow, R. & Antzelevitch, C. Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine Purkinje fibers. Circulation79, 674–686 (1989). CASPubMed Google Scholar
Roden, D. M. & Hoffman, B. F. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ. Res.56, 857–867 (1985). CASPubMed Google Scholar
Choy, A. M. J., Darbar, D., Dell'Orto, S. & Roden, D. M. Increased sensitivity to QT prolonging drug therapy immediately after cardioversion to sinus rhythm. J. Am. Coll. Cardiol.34, 396–401 (1999). CASPubMed Google Scholar
Makkar, R. R., Fromm, B. S., Steinman, R. T., Meissner, M. D. & Lehmann, M. H. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA270, 2590–2597 (1993). CASPubMed Google Scholar
Roden, D. M. Drug-induced prolongation of the QT Interval. N. Engl. J. Med.350, 1013–1022 (2004). CASPubMed Google Scholar
Roden, D. M. An underrecognized challenge in evaluating postmarketing drug safety. Circulation111, 246–248 (2005). PubMed Google Scholar
Fenichel, R. R. et al. Drug-induced torsades de pointes and implications for drug development. J. Cardiovasc. Electrophysiol.15, 475–495 (2004). One of several reviews on the implications for drug development and regulation of the link between HERG/IKrchannel block and drug-induced torsades de pointes. PubMedPubMed Central Google Scholar
Haverkamp, W. et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur. Heart J.21, 1216–1231 (2000). CASPubMed Google Scholar
Anderson, M. E., Al Khatib, S. M., Roden, D. M. & Califf, R. M. Cardiac repolarization: current knowledge, critical gaps, and new approaches to drug development and patient management. Am. Heart J.144, 769–781 (2002). CASPubMed Google Scholar
Jervell, A. & Lange-Nielsen, F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval and sudden death. Am. Heart J.54, 59–68 (1957). CASPubMed Google Scholar
Romano, C., Gemme, G. & Pongiglione, R. Aritmie cardiache rare in eta' pediatrica. Clin. Pediatr.45, 656–683 (1963). CAS Google Scholar
Ward, O. C. A new familial cardiac syndrome in children. J. Irish Med. Assoc.54, 103–106 (1964). CAS Google Scholar
Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell97, 175–187 (1999). CASPubMed Google Scholar
Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell80, 795–803 (1995). CASPubMed Google Scholar
Domingo A. et al. Sodium channel β4 subunit mutation causes congenital long QT syndrome. Heart Rhythm5, S34 (2006). Google Scholar
Mohler, P. J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature421, 634–639 (2003). CASPubMed Google Scholar
Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's Syndrome. Cell105, 511–5199 (2001). CASPubMed Google Scholar
Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell119, 19–31 (2004). CASPubMed Google Scholar
Splawski, I., Tristanti-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C. & Keating, M. T. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nature Genet.17, 338–340 (1997). CASPubMed Google Scholar
Vatta, M. et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation114, 2104–2112 (2006). CASPubMed Google Scholar
Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet.12, 17–23 (1996). PubMed Google Scholar
Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell80, 805–811 (1995). CASPubMed Google Scholar
Domingo A. Sodium channel á4 subunit mutation causes congenital long QT syndrome. Heart Rhythm3, S34 (2006). Google Scholar
Roden, D. M. et al. Multiple mechanisms in the long QT syndrome: current knowledge, gaps and future directions. Circulation94, 1996–2012 (1996). CASPubMed Google Scholar
Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell81, 299–307 (1995). CASPubMed Google Scholar
Belardinelli, L., Antzelevitch, C. & Vos, M. A. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol. Sci.24, 619–625 (2003). CASPubMed Google Scholar
Opthof, T. et al. Dispersion of repolarization in canine ventricle and the electrocardiographic T wave: Tp-e interval does not reflect transmural dispersion. Heart Rhythm.4, 341–348 (2007). PubMed Google Scholar
Opthof, T., Coronel, R., Janse, M. J. & Rosen, M. R. A wedge is not a heart. Heart Rhythm.4, 1116–1119 (2007). Google Scholar
Szabo, B., Sweidan, R., Rajagopalan, C. B. & Lazzara, R. Role of Na+:Ca2+ exchange current in Cs+-induced early after-depolarizations in Purkinje fibers. J. Cardiovasc. Electrophysiol.5, 933–944 (1994). CASPubMed Google Scholar
Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical impact. Circulation99, 529–533 (1999). CASPubMed Google Scholar
Donger, C. et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation96, 2778–2781 (1997). CASPubMed Google Scholar
Napolitano, C. et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J. Cardiovasc. Electrophysiol.11, 691–696 (2000). CASPubMed Google Scholar
Yang, P. et al. Allelic variants in long QT disease genes in patients with drug-associated torsades de pointes. Circulation105, 1943–1948 (2002). Examines the role of variants in the congenital long QT syndrome disease genes as modulators of the normal QT or of risk for acquired forms of the disease. CASPubMed Google Scholar
Sesti, F. et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl Acad. Sci.97, 10613–10618 (2000). CASPubMedPubMed Central Google Scholar
Mohler, P. J. et al. Defining the cellular phenotype of “Ankyrin-B Syndrome” variants: Human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation115, 432–441 (2007). PubMed Google Scholar
Wei, J. et al. KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels. Circulation100, 495 (1999). Google Scholar
Plant, L. D. et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J. Clin. Invest.116, 430–435 (2006). CASPubMedPubMed Central Google Scholar
Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science297, 1333–1336 (2002). CASPubMed Google Scholar
Pfeufer, A. et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ. Res.96, 693–701 (2005). Examines the role of variants in the congenital LQTS disease genes as modulators of the normal QT or of risk for acquired forms of the disease. CASPubMed Google Scholar
Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genet.38, 644–651 (2006). A paper that uses genome-wide association to identify a locus inNOS1APthat modulates normal QT. CASPubMed Google Scholar
Woosley, R. L., Chen, Y., Freiman, J. P. & Gillis, R. A. Mechanism of the cardiotoxic actions of terfenadine. JAMA269, 1532–1536 (1993). CASPubMed Google Scholar
Roden, D. M. Taking the idio out of idiosyncratic - predicting torsades de pointes. Pacing Clin. Electrophysiol.21, 1029–1034 (1998). CASPubMed Google Scholar
Jost, N. et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation112, 1392–1399 (2005). PubMed Google Scholar
Silva, J. & Rudy, Y. Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation112, 1384–1391 (2005). PubMedPubMed Central Google Scholar
Lesko, L. J. & Woodcock, J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nature Rev. Drug Discov.3, 763–769 (2004). CAS Google Scholar
Lesko, L. J. et al. Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-DruSafe Workshop. J. Clin. Pharmacol.43, 342–358. (2003). CASPubMed Google Scholar
Campbell, G. Some statistical and regulatory issues in the evaluation of genetic and genomic tests. J. Biopharm Stat.14, 539–552. (2004). PubMed Google Scholar
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Haga, S. B., Thummel, K. E. & Burke, W. Adding pharmacogenetics information to drug labels: lessons learned. Pharmacogenet. Genomics16, 847–854 (2006). CASPubMed Google Scholar
Questions and answers on new labelling for warfarin (marketed as Coumadin). FDA (online) 2007.
Pazdur, R. Changes in Camptosar package insert regarding dosing recommendations and risk assessment in patients with UGT1A1 enzyme deficiency. FDA (online) 2005. Google Scholar
Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J.15, 15 (2007). Google Scholar
Acuna, G. et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J.2, 327–334 (2002). CASPubMed Google Scholar
Daly, A. K. et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology132, 272–281 (2007). CASPubMed Google Scholar
Danoff, T. M. et al. A Gilbert's syndrome UGT1A1 variant confers susceptibility to tranilast-induced hyperbilirubinemia. Pharmacogenomics J.4, 49–53 (2004). CASPubMed Google Scholar
Huang, Y. S. et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology37, 924–930 (2003). CASPubMed Google Scholar
Roy., B. et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione _S_-transferase M1 'null' mutation. J. Gastroenterol. Hepatol.16, 1033–1037 (2001). CAS Google Scholar
Sharma, S. K., Balamurugan, A., Saha, P. K., Pandey, R. M. & Mehra, N. K. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am. J. Respir. Crit. Care Med.166, 916–919 (2002). PubMed Google Scholar
O'Donohue, J. et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut47, 717–720 (2000). CASPubMedPubMed Central Google Scholar
Simon, T. et al. Combined glutathione-_S_-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharmacol. Ther.67, 432–437 (2000). CASPubMed Google Scholar
Watanabe, I. et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther.73, 435–455 (2003). CASPubMed Google Scholar
Harrison-Woolrych, M., Clark, D. W., Hill, G. R., Rees, M. I. & Skinner, J. R. QT interval prolongation associated with sibutramine treatment. Br. J. Clin. Pharmacol.61, 464–469 (2006). CASPubMedPubMed Central Google Scholar
Fitzgerald, P. T. & Ackerman, M. J. Drug-induced torsades de pointes: the evolving role of pharmacogenetics. Heart Rhythm2, S30–S37 (2005). PubMed Google Scholar
Paulussen, A. D. et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med.82, 182–188 (2004). CASPubMed Google Scholar
Chevalier, P. et al. Non-invasive testing of acquired long QT syndrome: evidence for multiple arrhythmogenic substrates. Cardiovasc. Res.50, 386–398 (2001). CASPubMed Google Scholar