Assessing the potential of glucokinase activators in diabetes therapy (original) (raw)
Matschinsky, F. M. et al. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes55, 1–12 (2006). CASPubMed Google Scholar
Grimsby, J. et al. Allosteric activation of islet and hepatic glucokinase: a potential new approach to diabetes therapy. Diabetes Abstr.50 (Suppl. 2), A115 (2001). Google Scholar
Doliba, N. et al. Novel pharmacological glucokinase activators enhance glucose metabolism, respiration and insulin release in isolated pancreatic islets demonstrating a unique therapeutic potential (Abstr. 1495-P; 61st ADA Meeting, Philadelphia). Diabetes50 (Suppl. 2), A359 (2001). Google Scholar
Cuesta-Munoz, A. L. et al. Novel pharmacological glucokinase activators partly or fully reverse the catalytic defects of inactivating glucokinase missense mutants that cause MODY-2. Diabetes Abstr.50 (Suppl. 2), A109 (2001). Google Scholar
Grimsby, J. et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science301, 370–373 (2003). First peer-reviewed report on the discovery and potential of GKAs. CASPubMed Google Scholar
Grimsby, J., Matschinsky, F. M. & Grippo J. F . in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. Vol. 16. (eds Matschinsky, F. M. & Magnuson, M. A.) 360–378 (Karger, Basel, 2004). Google Scholar
Meglasson, M. D. & Matschinsky, F. M. in Diabetes/Metabolism Reviews 3: Regulation of Insulin Secretion (ed. DeFronzo, R. A.) 163–214 (John Wiley & Sons, New York, 1986). Google Scholar
Matschinsky, F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes45, 223–241 (1996). CASPubMed Google Scholar
Walker, D. G. & Rao, S. The role of glucokinase in the phosphorylation of glucose by rat liver. Biochem. J.90, 360–368 (1964). First peer-reviewed report on the presence and significance of hepatic glucokinase. CASPubMedPubMed Central Google Scholar
Sols, A., Salas, M. & Vinuela, E. Induced biosynthesis of liver glucokinase. Adv. Enzyme Regul.2, 177–188 (1964). CASPubMed Google Scholar
Sharma, C., Manjeshwar, R. & Weinhouse, S. Hormonal and dietary regulation of hepatic glucokinase. Adv. Enzyme Regul.2, 189–200 (1964). CASPubMed Google Scholar
Matschinsky, F. M. & Ellerman, J. E. Metabolism of glucose in the islets of Langerhans. J. Biol. Chem.243, 2730–2736 (1968). First report on the presence and significance of glucokinase in mouse pancreatic islets. CASPubMed Google Scholar
Bedoya, F. J., Matschinsky, F. M., Shimizu, T., O'Neil, J. J. & Appel, M. C. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J. Biol. Chem.261, 10760–10764 (1986). First report providing evidence for differential control of glucokinase expression, primarily by glucose in pancreatic islet tissue and by insulin in the liver. CASPubMed Google Scholar
Froguel, P. et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature356, 162–164 (1992). CASPubMed Google Scholar
Hattersley, A. T. et al. Linkage of type 2 diabetes to the glucokinase gene. Lancet339, 1307–1310 (1992). CASPubMed Google Scholar
Edghill, E. L. & Hattersley, A. T. in Pancreatic Beta Cell in Health and Disease (eds Seino, S. & Bell, G. I.) 399–430 (Springer, Tokyo2008). Authoritative review of glucokinase-linked hyperglycaemia syndromes. Google Scholar
Glaser, B. et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med.338, 226–230 (1998). First report on glucokinase-linked hyperinsulinism syndrome. CASPubMed Google Scholar
Christesen, H. et al. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes51, 1240–1246 (2002). CASPubMed Google Scholar
Gloyn, A. L. et al. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations. Diabetes52, 2433–2440 (2003). CASPubMed Google Scholar
MCuesta-uñoz, A. L. et al. Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes53, 2164–2168 (2004). Google Scholar
Njolstad, P. R. et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med.344, 1588–1592 (2001). CASPubMed Google Scholar
Njølstad, P. R. et al. Permanent neonatal diabetes mellitus due to glucokinase deficiency — an inborn error of the glucose–insulin signaling pathway. Diabetes52, 2854–2860 (2003). PubMed Google Scholar
Brocklehurst, K. J. et al. Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators. Diabetes53, 535–541 (2004). CASPubMed Google Scholar
Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J. & Nagata, Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure (Camb.)12, 429–438 (2004). Seminal report on the crystal structures of the unliganded 'super-open' form and the glucose- and GKA-containing ternary complex of the 'closed-form' of glucokinase; also provides a plausible model explaining the cooperative kinetics of glucokinase with regard to glucose. CAS Google Scholar
Dunten, P. et al. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 145–154 (Karger, Basel, 2004). Google Scholar
Futamura, M. et al. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J. Biol. Chem.281, 37668–37674 (2006). CASPubMed Google Scholar
Efanov, A. M. et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology146, 3696–3701 (2005). CASPubMed Google Scholar
Fyfe, M. C. T. et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia50, 1277–1287 (2007). CASPubMed Google Scholar
Leighton, B., Atkinson, A., Coope, G. J. & Coghlan, M. P. Improved glycemic control after sub-acute administration of a glucokinase activator to male Zucker (fa/fa) rats. Diabetes Abstr.56, 0377–OR (2007). Google Scholar
Sorhede Winzell, M. et al. Glucokinase activation reduces glycemia and improves glucose tolerance in mice with high-fat diet-induced insulin resistance. Diabetes Abstr.56, 1482—P (2007). Google Scholar
Nakamura, A. et al. Impact of small molecule glucokinase activator on glucose metabolism in response to high fat diet in mice with β-cell specific haploinsufficiency of glucokinase gene. Diabetes Abstr.56, 529–P (2007). Google Scholar
Coghlan, M. & Leighton, B. Glucokinase activators in diabetes management. Expert Opin. Investig. Drugs17, 145–167 (2008). CASPubMed Google Scholar
Guertin, K. R & Grimsby, J. Small molecule glucokinase activators as glucose lowering agents: a new paradigm for diabetes therapy. Curr. Med. Chem.13, 1839–1843 (2006). CASPubMed Google Scholar
Sarabu, R., Berthel, S. J., Kester, R. F. & Tilley, J. W. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin. Ther. Patents18, 759–768 (2008). CAS Google Scholar
Sarabu, R. & Grimsby, J. Targeting glucokinase activation for the treatment of type 2 diabetes — a status review. Curr. Opin. Drug Discov. Devel.8, 631–637 (2005). CASPubMed Google Scholar
Cárdenas, M. L., Cornish-Bowden, A. & Ureta, T. Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta1401, 242–264 (1998). PubMed Google Scholar
Wilson, J. E. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 18–30 (Karger, Basel, 2004). Google Scholar
Iynedjian, P. B. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 155–168 (Karger, Basel, 2004). Google Scholar
Postic, C., Shiota, M. & Magnuson, M. A. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog. Horm. Res.56, 195–218 (2001). CASPubMed Google Scholar
Iynedjian, P. B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci.66, 27–42 (2008). PubMed Central Google Scholar
Vandercammen, A. & Van Schaftingen, E. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur. J. Biochem.191, 483–489 (1990). Original report describing the discovery of the glucokinase regulatory protein in liver tissue. CASPubMed Google Scholar
Vandercammen, A. & Van Schaftingen, E. Competitive inhibition of liver glucokinase by its regulatory protein. Eur. J. Biochem.200, 545–551 (1991). CASPubMed Google Scholar
Detheux, M., Vandercammen, A. & Van Schaftingen, E. Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation. Eur. J. Biochem.200, 553–561 (1991). CASPubMed Google Scholar
Veiga-da-Cunha, M. & Van Schaftingen, E. Identification of fructose 6-phosphate- and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J. Biol. Chem.277, 8466–8473 (2002). CASPubMed Google Scholar
Agius, L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J.414, 1–18 (2008). CASPubMed Google Scholar
Agius, L. & Peak, M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem. J.296, 785–796 (1993). CASPubMedPubMed Central Google Scholar
Agius, L., Peak, M. & Van Schaftingen, E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem. J.309, 711–713 (1995). CASPubMedPubMed Central Google Scholar
Agius, L. The physiological role of glucokinase binding and translocation in hepatocytes. Adv. Enzyme Regul.38, 303–331 (1998). CASPubMed Google Scholar
Payne, V. A., Arden, C., Lange, A. J. & Agius, L. Contributions of glucokinase and phosphofructokinase-2/fructose bisphosphatase-2 to the elevated glycolysis in hepatocytes from Zucker fa/fa rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.293, R618–R625 (2007). CASPubMed Google Scholar
Baltrusch, S., Wu, C., Okar, D. A., Tiedge, M. & Lange, A. J. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 262–274 (Karger, Basel, 2004). Google Scholar
Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424, 952–956 (2003). CASPubMed Google Scholar
Danial, N. N. et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nature Med.14, 144–153 (2008). Report on the presence and dual role of the pro-apoptotic protein BAD in pancreatic islet tissue — that is, as regulator of β-cell replication and as a protein-binding partner of mitochondrial glucokinase, controlling glucose-stimulated insulin release. CASPubMed Google Scholar
Heredia, V. V., Thomson, J., Nettleton, D. & Sun, S. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry45, 7553–7562 (2006). CASPubMed Google Scholar
Kim, Y. B., Kalinowski, S. S. & Marcinkeviciene, J. A pre-steady state analysis of ligand binding to human glucokinase: evidence for a preexisting equilibrium. Biochemistry46, 1423–1431 (2007). CASPubMed Google Scholar
Zhang, J. et al. Conformational transition pathway in the allosteric process of human glucokinase. Proc. Natl Acad. Sci. USA103, 13368–13373 (2006). CASPubMed Google Scholar
Zelent, B. et al. Sugar binding to recombinant wild-type and mutant glucokinase monitored by kinetic measurement and tryptophan fluorescence. Biochem J.413, 269–280 (2008). CASPubMed Google Scholar
Lin, S. X. & Neet, K. E. Demonstration of a slow conformational change in liver glucokinase by fluorescence spectroscopy. J. Biol. Chem.265, 9670–9675 (1990). Authoritative discussion of the 'slow transition model', which explains the sigmoidal glucose dependency of the glucokinase reaction. CASPubMed Google Scholar
Neet, K. E. & Ainslie, G. R. Hysteretic enzymes. Methods Enzymol.64, 192–226 (1980). CASPubMed Google Scholar
Cornish-Bowden, A. & Cárdenas, M. L. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. Vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 125–134 (Karger, Basel, 2004). Brief expert discussion of the 'mnemonic model' explaining the sigmoidal glucose dependency of the glucokinase reaction.
Jetton, T. L. et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J. Biol. Chem.269, 3641–3654 (1994). CASPubMed Google Scholar
Zelent, D. et al. A glucose sensor role for glucokinase in anterior pituitary cells. Diabetes55, 1923–1929 (2006). CASPubMed Google Scholar
Sorenson, R. L., Stout, L. E., Brelje, T. C., Jetton, T. & Matschinsky, F. M. Immunohistochemical evidence for the presence of glucokinase in the gonadotropes and thyrothropes of the anterior pituitary gland of rat and monkey. J. Histochem. Cytochem.55, 555–566 (2007). First report on the presence and possible role of glucokinase in gonadotropes of the pituitary gland. CASPubMed Google Scholar
Zelent, D. et al. Glucokinase and glucose homeostasis: proven concepts and new ideas. Biochem. Soc. Trans.33, 306–310 (2005). CASPubMed Google Scholar
Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol. Cell7, 559–570 (2001). CASPubMed Google Scholar
Levin, B. E., Routh, V. H., Kang, L., Sanders, N. M. & Dunn-Meynell, A. A. Neuronal glucosensing: what do we know after 50 years? Diabetes53, 2521–2528 (2004). CASPubMed Google Scholar
Levin, B. E., Becker, T. C., Eiki, J.-I., Zhang, B. B. & Dunn-Meynell, A. A. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes57, 1371–1379 (2008). CASPubMed Google Scholar
Mountjoy, P. D. & Rutter, G. A. Glucose sensing by hypothalamic neurones and pancreatic islet cells: AMPle evidence for common mechanisms? Exp. Physiol.92, 311–319 (2007). CASPubMed Google Scholar
Thorens, B. The Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. Vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 327–338 (Karger, Basel, 2004). Google Scholar
Donovan, C. M., Hamilton-Wessler, M., Halter, J. B. & Bergman, R. N. Primacy of liver glucosensors in the sympathetic response to progressive hypoglycemia. Proc. Natl Acad. Sci. USA91, 2863–2867 (1994). CASPubMed Google Scholar
Cherrington, A. D. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes48, 1198–1214 (1999). Authoritative discussion of the regulation of hepatic glucose metabolism, including evaluation of mechanisms underlying the 'portal signal'. CASPubMed Google Scholar
Trus, M. D. et al. Regulation of glucose metabolism in pancreatic islets. Diabetes30, 911–922 (1981). CASPubMed Google Scholar
Bedoya, F. D., Wilson, J. M., Ghosh, A. K., Finegold, D. & Matschinsky, F. M. The glucokinase glucose sensor in human pancreatic islet tissue. Diabetes35, 61–67 (1986). First report on quantitative measurements and significance of glucokinase in normal human pancreatic islet tissue. CASPubMed Google Scholar
Liang, Y., Najafi, H. & Matschinsky, F. M. Glucose regulates glucokinase activity in cultured islets from rat pancreas. J. Biol. Chem.265, 16863–16866 (1990). CASPubMed Google Scholar
Liang, Y. Concordant glucose induction of glucokinase, glucose usage and glucose stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes41, 792–806 (1992). CASPubMed Google Scholar
Tal, M., Liang, Y., Najafi, H., Lodish, H. F. & Matschinsky, F. M. Expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms in cells of cultured rat pancreatic islets. J. Biol. Chem.267, 17241–17247 (1992). CASPubMed Google Scholar
Newgard, C. B. & Matschinsky, F. M. in The Endocrine System Vol. II: The Endocrine Pancreas and Regulation of Metabolism. Handbook of Physiology. 125–151 (Oxford Univ. Press, Oxford 2001). Google Scholar
MacDonald, M. J. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. J. Biol. Chem.270, 20051–20058 (1995). CASPubMed Google Scholar
Li, C. et al. Elimination of KATP channels in mouse islets results in elevated [U-13C]glucose metabolism, glutaminolysis, and pyruvate cycling but a decreased γ-aminobutyric acid shunt. J. Biol. Chem.283, 17238–17249 (2008). CASPubMedPubMed Central Google Scholar
Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes49, 1751–1760 (2000). CASPubMed Google Scholar
Prentki, M. & Matschinsky, F. M. Ca2+, cAMP and phosphoinositide derived messengers in the coupling mechanisms of insulin secretion. Physiol. Rev.67, 1185–1248 (1987). CASPubMed Google Scholar
Hardie, D. G. & Carling, D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur. J. Biochem.246, 259–273 (1997). CASPubMed Google Scholar
Trus, M. D et al. A comparison of the effects of glucose and acetylcholine on insulin release and intermediary metabolism in rat pancreatic islets. J. Biol. Chem.254, 3921–3929 (1979). CASPubMed Google Scholar
Trus, M., Warner, H. & Matschinsky, F. M. Effects of glucose on insulin release and on intermediary metabolism of isolated perifused pancreatic islets from fed and fasted rats. Diabetes29, 1–14 (1980). CASPubMed Google Scholar
Gromada, J., Franklin, I. & Wollheim, C. B. α-Cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev.28, 84–116 (2007). CASPubMed Google Scholar
Liu, Y.-J., Vieira, E. & Gylfe, E. A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting α-cell. Cell Calcium35, 357–365 (2004). CASPubMed Google Scholar
Vieira, E., Salehi, A. & Gylfe, E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia, 50, 370–379 (2007). CASPubMed Google Scholar
Pagliara, A. S., Stillings, S. N., Hover, B., Martin, D. M. & Matschinsky, F. M. Glucose modulation of amino acid-induced glucagon and insulin release in the isolated perfused rat pancreas. J. Clin. Invest.54, 819–832 (1974). CASPubMedPubMed Central Google Scholar
Pagliara, A. S., Stillings, S. N., Haymond, M. W., Hover, B. A. & Matschinsky, F. M. Insulin and glucose as modulators of the amino acid-induced glucagon release in the isolated pancreas of alloxan and streptozotocin diabetic rats. J. Clin. Invest.55, 244–255 (1975). CASPubMedPubMed Central Google Scholar
Matschinsky, F. M., Pagliara, A. S., Stillings, S. N. & Hover, B. A. Glucose and ATP levels in pancreatic islet tissue of normal and diabetic rats. J. Clin. Invest.58, 1193–1200 (1976). CASPubMedPubMed Central Google Scholar
Matschinsky, F. M. et al. Hormone secretion and glucose metabolism in islets of Langerhans of the isolated perfused pancreas from normal and streptozotocin diabetic rats. J. Biol. Chem.251, 6053–6061 (1976). CASPubMed Google Scholar
Pagliara, A. S., Stillings, S. N., Zawalich, W. S., Williams, A. D. & Matchinsky, F. M. Glucose and 3-_O_-methylglucose protection against alloxan poisoning of pancreatic alpha and beta cells. Diabetes26, 973–979 (1977). CASPubMed Google Scholar
Matschinsky, F. M., Rujanavech, C., Pagliara, A. & Norfleet, W. T. Adaptations of alpha2- and beta-cells of rat and mouse pancreatic islets to starvation, to refeeding after starvation, and to obesity. J. Clin. Invest.65, 207–218 (1980). CASPubMedPubMed Central Google Scholar
Reimann, F., Ward, P. S. & Gribble, F. M. Signalling mechanisms underlying the release of glucagon-like peptide-1. Diabetes55 (Suppl. 2), S78–S85 (2006). CAS Google Scholar
Reimann, F., Williams, L., da Silva Xavier, G., Rutter, G. A. & Gribble, F. M. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia47, 1592–1601 (2004). CASPubMed Google Scholar
Murphy, R. et al. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor. Diabetologia52, 154–159 (2008). PubMed Google Scholar
Matschinsky, F. M. in Pancreatic Beta Cell in Health and Disease (eds Seino, S. & Bell, G. I.) 451–463 (Springer, Tokyo, 2008). Google Scholar
Hille, B., Tse, A. Tse, F. W. & Bosma, M. M. Signaling mechanisms during the response of pituitary gonadotropes to GnRH. Recent Prog. Horm. Res.50, 75–95 (1995). CASPubMed Google Scholar
Torres, T. P. et al. Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in Zucker diabetic fatty rats. Diabetes 24 Oct 2008 (doi:10.2337/db08-1119) PubMed Google Scholar
Nelson, D. L. & Cox, M. M. (eds) Lehninger Principles of Biochemistry 569–613 (W. H. Freeman, New York, 2008). Google Scholar
Nelson, D. L. & Cox, M. M. (eds) Lehninger Principles of Biochemistry 901–944 (W. H. Freeman, New York, 2008). Google Scholar
Magnuson, M. A. & Kim, K.-A. Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes Vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 289–300 (Karger, Basel, 2004). Google Scholar
Gloyn, A. L. et al. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes Vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 92–109 (Karger, Basel, 2004). Google Scholar
Pino, M. F. Glucokinase thermolability and hepatic regulatory protein binding are essential factors for predicting the blood glucose phenotype of missense mutations. J. Biol. Chem.282, 13906–13916 (2007). CASPubMed Google Scholar
LeRoith, D., Taylor, S. I., & Olefsky, J. M. (eds) Diabetes Mellitus: A Fundamental and Clinical Text. 3rd edn (Lippincott Williams & Wilkins, Philadelphia, 2004). Google Scholar
McCarthy, M. I. & Froguel, P. Genetic approaches to the molecular understanding of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.283, E217–E225 (2002). CASPubMed Google Scholar
Chen, W. M. et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J. Clin. Invest.118, 2620–2628 (2008). CASPubMedPubMed Central Google Scholar
Wilms, B., Ben-Ami, P. & Söling, H. D. Hepatic enzyme activities of glycolysis and gluconeogenesis in diabetes of man and laboratory animals. Horm. Metab. Res.2, 135–141 (1970). Google Scholar
Caro, J. F. et al. Liver glucokinase: decreased activity in patients with type II diabetes. Horm. Metab. Res.27, 19–22 (1995). CASPubMed Google Scholar
Liang, Y. et al. In situ glucose uptake and glucokinase activity of pancreatic islets in diabetic and obese rodents. J. Clin. Invest.93, 2473–2481 (1994). CASPubMedPubMed Central Google Scholar
Bedoya, F. J., Oberholtzer, J. C. & Matschinsky, F. M. Glucokinase in B-cell-depleted islets of Langerhans. J. Histochem. Cytochem.35, 1089–1093 (1987). CASPubMed Google Scholar
Deng, S. et al. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes53, 624–632 (2004). CASPubMed Google Scholar
Nolte, M. S. & Karam, J. H. in Basic and Clinical Pharmacology 10th edn (ed. Katzung, B. G.) 683–705 (McGraw-Hill, New York, 2007). Google Scholar
Qian-Cutrone, J. et al. Glucolipsin A and B, two new glucokinase activators produced by Streptomyces purpurogeniscleroticus and Nocardia vaccinii. J. Antibiot. (Tokyo)52, 245–255 (1999). CAS Google Scholar
Gloyn, A. L. et al. Insights into the structure and regulation of glucokinase from a novel mutation (V62M) which causes maturity-onset diabetes of the young. J. Biol. Chem.280, 14105–14113 (2005). CASPubMed Google Scholar
Sagen, J. V. et al. From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation. Diabetes55, 1713–1722 (2006). CASPubMed Google Scholar
Ralph, E. C., Thomson, J., Almaden, J. & Sun, S. Glucose modulation of glucokinase activation by small molecules. Biochemistry47, 5028–5036 (2008). CASPubMed Google Scholar
Johnson, D. et al. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes56, 1694–1702 (2007). CASPubMed Google Scholar
Zhi, J. et al. A novel glucokinase activator RO4389620 improved fasting and postprandial plasma glucose in type 2 diabetic patients. Diabetologia51 (Suppl. 1), 23 Abstr. 42 (2008).
Bonadonna, R. C. et al. Glucokinase activator RO4389620 improves beta cell function and plasma glucose indexes in patients with type 2 diabetes. Diabetologia51 (Suppl. 1), 371 Abstr. 927 (2008). Abstract describing improvement of β-cell function by GKAs in patients with T2DM.
Zhai, S. et al. Phase I assessment of a novel glucose activator RO4389620 in healthy male volunteers. Diabetologia51 (Suppl. 1) 372 Abstr. 928 (2008).
Coope, G. J. et al. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female Zucker rats. Brit. J. Pharmacol.149, 328–335 (2006). CAS Google Scholar
Vaxillaire, M. et al. for the DESIR Study Group. The common P446L polymorphism in GCAR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes57, 2253–2257 (2008). CASPubMedPubMed Central Google Scholar
Orho-Melander, M. et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes57, 3112–3121 (2008). CASPubMedPubMed Central Google Scholar
Sparsø, T. et al. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based sample of middle-aged people with normal and abnormal glucose regulation. Diabetologia51, 70–75 (2008). PubMed Google Scholar
Terauchi, Y. et al. Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance. J. Clin. Invest.117, 246–257 (2007). Report of studies that strongly suggest that glucokinase and insulin-receptor substrate-2 are required for compensatory β-cell hyperplasia in diet-induced obesity and diabetes. CASPubMedPubMed Central Google Scholar
Takamoto, I. et al. Crucial role of insulin receptor substrate-2 in compensatory β-cell hyperplasia in response to high fat diet-induced insulin resistance. Diabetes Obes. Metab.10 (Suppl. 4), 147–156 (2008). CASPubMed Google Scholar
Tourrel, C., Bailbé, D., Meile, M.-J., Kergoat, M. & Portha, B. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes50, 1562–1570 (2001). CASPubMed Google Scholar
Panten, U., Schwanstecher, M. & Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes104, 1–9 (1996). CASPubMed Google Scholar
Hirasawa, A., Hara, T., Katsuma, S., Adachi, T. & Tsujimoto, G. Free fatty acid receptors and drug discovery. Biol. Pharm. Bull.31, 1847–1851 (2008). CASPubMed Google Scholar
Arden,C., Baltrusch, S. & Agius, L. Glucokinase regulatory protein is associated with mitochondria in hepatocytes. FEBS Lett.580, 2065–2070 (2006). CASPubMed Google Scholar
Miwa, I., Toyoda, Y. & Yoshie, S. in Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. vol. 16 (eds Matschinsky, F. M. & Magnuson, M. A.) 350–359 (Karger, Basel, 2004). Google Scholar
Moore, M. C., Davis, S. N., Mann, S. L. & Cherrington, A. D. Acute fructose administration improves oral glucose tolerance in adults with type 2 diabetes. Diabetes Care24, 1882–1887 (2001). CASPubMed Google Scholar
Grimsby, J. et al. Characterization of glucokinase regulatory protein deficient mice. J. Biol. Chem.275, 7826–7831 (2000). CASPubMed Google Scholar
Munoz-Alonzo, M. J. et al. A novel cytosolic dual specificity phospatase, interacting with glucokinase, increases glucose phosphorylation rate. J. Biol. Chem.275, 32406–32412 (2000). Google Scholar
Shiraishi, A. et al. A novel glucokinase regulator in pancreatic beta-cells: precursor of propionyl-CoA carboxylase beta-subunit interacts with glucokinase and augments its activity. J. Biol. Chem.276, 2325–2328 (2001). CASPubMed Google Scholar
Rizzo, M. A. & Piston, D. W. Regulation of beta-cell glucokinase by nitrosylation and association with nitric oxide synthase. J. Cell Biol.161, 243–248 (2003). CASPubMedPubMed Central Google Scholar
Bjorkhauk, L., Molnes, J., Sovik, O., Njolstad, P. R. & Flatmark, T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin dependent cotranslational proteosomal degradation. J. Biol. Chem.282, 22757–22764 (2007). Google Scholar
Marshall, S. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci. STKE2006, re7 (2006). PubMed Google Scholar
Herman, M. A. & Kahn, B. B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest.116, 1767–1775 (2006). CASPubMedPubMed Central Google Scholar
Cuesta-Munoz, A. L. et al. The second “_de novo_” activating mutation (V452L) in a patient with developmental delay. Diabetologia51 (Suppl. 1), 125 Abstr. 285 (2008).
Christesen, H. B. T. et al. Activating glucokinase GCK mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation Eur. J. Endocrinol.159, 27–34 (2008). CASPubMed Google Scholar
Wabitsch, M. et al. Heterogeneity in disease severity in a family with a novel G68V GCK activating mutation causing persistent hyperinsulinaemic hypoglycaemia of infancy. Diabetic Med.24, 1393–1399 (2007). CASPubMed Google Scholar
Bertram, L. S. et al. SAR, pharmacokinetics, safety, and efficacy of glucokinase activating