Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system (original) (raw)
Changeux, J. P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science308, 1424–1428 (2005). CASPubMed Google Scholar
Corringer, P. J., Le Novere, N. & Changeux, J. P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol.40, 431–458 (2000). CASPubMed Google Scholar
Wilson, G. & Karlin, A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl Acad. Sci. USA98, 1241–1248 (2001). CASPubMedPubMed Central Google Scholar
Sine, S. M. & Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature440, 448–455 (2006). CASPubMed Google Scholar
Changeux, J. P. & Edelstein, S. J. Nicotinic Acetylcholine Receptors: From Molecular Biology To Cognition (Odile Jacob, New York, 2005). A general review book on nicotinic receptors and their function. Google Scholar
Gotti, C., Riganti, L., Vailati, S. & Clementi, F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des.12, 407–428 (2006). CASPubMed Google Scholar
Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol.47, 699–729 (2007). CASPubMed Google Scholar
Sallette, J. et al. Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron46, 595–607 (2005). CASPubMed Google Scholar
Arneric, S. P., Holladay, M. & Williams, M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem. Pharmacol.74, 1092–1101 (2007). An historical account and outlook on future research on nicotinic compounds in the pharmaceutical industry. CASPubMed Google Scholar
Levin, E. D. & Rezvani, A. H. Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochem. Pharmacol.74, 1182–1191 (2007). CASPubMedPubMed Central Google Scholar
Romanelli, M. N. et al. Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem2, 746–767 (2007). CASPubMed Google Scholar
Changeux, J. P. & Taly, A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol. Med.14, 93–102 (2008). CASPubMed Google Scholar
Gotti, C. et al. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol.74, 1102–1111 (2007). CASPubMed Google Scholar
Grady, S. R. et al. Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the α3β4* and α3β3β4* subtypes mediate acetylcholine release. J. Neurosci.29, 2272–2282 (2009). CASPubMedPubMed Central Google Scholar
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature411, 269–276 (2001). This paper describes the first-characterized atomic structure of an invertebrate homologue of the extracellular domain and ACh-binding sites of the nAChR. CASPubMed Google Scholar
Celie, P. H. et al. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J. Biol. Chem.280, 26457–26466 (2005). CASPubMed Google Scholar
Hansen, S. B. et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J.24, 3635–3646 (2005). CASPubMedPubMed Central Google Scholar
Corringer, P. J. et al. Identification of a new component of the agonist binding site of the nicotinic α7 homooligomeric receptor. J. Biol. Chem.270, 11749–11752 (1995). CASPubMed Google Scholar
Grutter, T. & Changeux, J. P. Nicotinic receptors in wonderland. Trends Biochem. Sci.26, 459–463 (2001). CASPubMed Google Scholar
Mourot, A., Grutter, T., Goeldner, M. & Kotzyba-Hibert, F. Dynamic structural investigations on the torpedo nicotinic acetylcholine receptor by time-resolved photoaffinity labeling. Chembiochem7, 570–583 (2006). CASPubMed Google Scholar
Sine, S. M. The nicotinic receptor ligand binding domain. J. Neurobiol.53, 431–446 (2002). CASPubMed Google Scholar
Kotzyba-Hibert, F., Mourot, A., Grutter, T. & Goeldner, M. in XIth Cholinergic Mechanisms Symposium (eds. Fisher, M. D. L. A. & Soreq, H.) 607 (Taylor & Francis, London, 2004). Google Scholar
Kalamida, D. et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J.274, 3799–3845 (2007). CASPubMed Google Scholar
Bourne, Y., Talley, T. T., Hansen, S. B., Taylor, P. & Marchot, P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO J.24, 1512–1522 (2005). CASPubMedPubMed Central Google Scholar
Brejc, K., van Dijk, W. J., Smit, A. B. & Sixma, T. K. The 2.7 Å structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Novartis Found. Symp.245, 22–29; discussion 29–32, 165–8 (2002). CASPubMed Google Scholar
Celie, P. H. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron41, 907–914 (2004). CASPubMed Google Scholar
Celie, P. H. et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nature Struct. Mol. Biol.12, 582–588 (2005). CAS Google Scholar
Hansen, S. B. et al. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica. J. Mol. Neurosci.30, 101–102 (2006). This study describes the structure of the ligand-binding domain of AChBP bound to several nicotinic agonists and antagonists. CASPubMed Google Scholar
Hansen, S. B. & Taylor, P. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-α-subunit interfaces of heteromeric neuronal nicotinic receptors. J. Mol. Biol.369, 895–901 (2007). CASPubMedPubMed Central Google Scholar
Ihara, M. et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci.8, 71–81 (2008). CASPubMedPubMed Central Google Scholar
Dennis, M. et al. Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry27, 2346–2357 (1988). CASPubMed Google Scholar
Galzi, J. L. et al. Identification of a novel amino acid α-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J. Biol. Chem.265, 10430–10437 (1990). CASPubMed Google Scholar
Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation-π binding site in the nicotinic receptor. Proc. Natl Acad. Sci. USA95, 12088–12093 (1998). CASPubMedPubMed Central Google Scholar
Xiu, X., Puskar, N. L., Shanata, J. A., Lester, H. A. & Dougherty, D. A. Nicotine binding to brain receptors requires a strong cation-π interaction. Nature458, 534–537 (2009). CASPubMedPubMed Central Google Scholar
Williamson, P. T., Verhoeven, A., Miller, K. W., Meier, B. H. & Watts, A. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA104, 18031–18036 (2007). CASPubMedPubMed Central Google Scholar
Ulens, C. et al. Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl Acad. Sci. USA103, 3615–3620 (2006). CASPubMedPubMed Central Google Scholar
Yuan, H. & Petukhov, P. A. Computational evidence for the ligand selectivity to the α4β2 and α3β4 nicotinic acetylcholine receptors. Bioorg. Med. Chem.14, 7936–7942 (2006). CASPubMed Google Scholar
Corringer, P. J. et al. Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci.18, 648–657 (1998). CASPubMedPubMed Central Google Scholar
Horenstein, N. A., McCormack, T. J., Stokes, C., Ren, K. & Papke, R. L. Reversal of agonist selectivity by mutations of conserved amino acids in the binding site of nicotinic acetylcholine receptors. J. Biol. Chem.282, 5899–5909 (2007). CASPubMed Google Scholar
Dutertre, S. & Lewis, R. J. Toxin insights into nicotinic acetylcholine receptors. Biochem. Pharmacol.72, 661–670 (2006). CASPubMed Google Scholar
Grutter, T. et al. A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels. C. R. Biol.328, 223–234 (2005). CASPubMed Google Scholar
Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y. & Changeux, J. P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc. Natl Acad. Sci. USA83, 2719–2723 (1986). CASPubMedPubMed Central Google Scholar
Blanton, M. P., McCardy, E. A., Huggins, A. & Parikh, D. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry37, 14545–14555 (1998). CASPubMed Google Scholar
Faghih, R., Gopalakrishnan, M. & Briggs, C. A. Allosteric modulators of the α7 nicotinic acetylcholine receptor. J. Med. Chem.51, 701–712 (2008). CASPubMed Google Scholar
Bertrand, D. & Gopalakrishnan, M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol.74, 1155–1163 (2007). CASPubMed Google Scholar
Arias, H. R., Bhumireddy, P. & Bouzat, C. Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors. Int. J. Biochem. Cell Biol.38, 1254–1276 (2006). CASPubMed Google Scholar
Hsiao, B. et al. Determinants of zinc potentiation on the α4 subunit of neuronal nicotinic receptors. Mol. Pharmacol.69, 27–36 (2006). CASPubMed Google Scholar
Moroni, M. et al. Non-agonist-binding subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the α4β2 nicotinic receptor: an α4–α4 interface is required for Zn2+ potentiation. J. Neurosci.28, 6884–6894 (2008). CASPubMedPubMed Central Google Scholar
Sigel, E. Mapping of the benzodiazepine recognition site on GABAA receptors. Curr. Top. Med. Chem.2, 833–839 (2002). CASPubMed Google Scholar
Galzi, J. L., Bertrand, S., Corringer, P. J., Changeux, J. P. & Bertrand, D. Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J.15, 5824–5832 (1996). CASPubMedPubMed Central Google Scholar
Le Novere, N., Grutter, T. & Changeux, J. P. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl Acad. Sci. USA99, 3210–3215 (2002). CASPubMedPubMed Central Google Scholar
McLaughlin, J. T., Fu, J., Sproul, A. D. & Rosenberg, R. L. Role of the outer β-sheet in divalent cation modulation of α7 nicotinic receptors. Mol. Pharmacol.70, 16–22 (2006). CASPubMed Google Scholar
Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature457, 111–114 (2009). This paper, together with reference 80, provided the first-characterized atomic structure of a bacterial channel in an apparently open conformation, constituting atomic resolution of a possible gating mechanism. CASPubMed Google Scholar
Popot, J. L., Demel, R. A., Sobel, A., Van Deenen, L. L. & Changeux, J. P. Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur. J. Biochem.85, 27–42 (1978). CASPubMed Google Scholar
Barrantes, F. J. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Brain Res. Rev.47, 71–95 (2004). CASPubMed Google Scholar
Dacosta, C. J. & Baenziger, J. E. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem.284, 17819–17825 (2009). CASPubMedPubMed Central Google Scholar
Hamouda, A. K., Chiara, D. C., Sauls, D., Cohen, J. B. & Blanton, M. P. Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]azicholesterol. Biochemistry45, 976–986 (2006). CASPubMed Google Scholar
Blanton, M. P., Xie, Y., Dangott, L. J. & Cohen, J. B. The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid–protein interface. Mol. Pharmacol.55, 269–278 (1999). CASPubMed Google Scholar
Nievas, G. A., Barrantes, F. J. & Antollini, S. S. Conformation-sensitive steroid and fatty acid sites in the transmembrane domain of the nicotinic acetylcholine receptor. Biochemistry46, 3503–3512 (2007). PubMed Google Scholar
Hosie, A. M., Buckingham, S. D., Hamon, A. & Sattelle, D. B. Replacement of asparagine with arginine at the extracellular end of the second transmembrane (M2) region of insect GABA receptors increases sensitivity to penicillin G. Invert. Neurosci.6, 75–79 (2006). CASPubMed Google Scholar
Nirthanan, S., Garcia, G. III, Chiara, D. C., Husain, S. S. & Cohen, J. B. Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J. Biol. Chem.283, 22051–22062 (2008). CASPubMedPubMed Central Google Scholar
Chiara, D. C., Dangott, L. J., Eckenhoff, R. G. & Cohen, J. B. Identification of nicotinic acetylcholine receptor amino acids photolabeled by the volatile anesthetic halotane. Biochemistry42, 13457–13467 (2003). CASPubMed Google Scholar
Young, G. T., Zwart, R., Walker, A. S., Sher, E. & Millar, N. S. Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl Acad. Sci. USA105, 14686–14691 (2008). CASPubMedPubMed Central Google Scholar
Bertrand, D. et al. Positive allosteric modulation of the α7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2–M3 segment. Mol. Pharmacol.74, 1407–1416 (2008). This study and reference 63 report the first identification of the binding site for allosteric modulators in the transmembrane domain of nAChRs. CASPubMed Google Scholar
Li, G. D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci.26, 11599–11605 (2006). CASPubMedPubMed Central Google Scholar
Hales, T. G. et al. Common determinants of single channel conductance within the large cytoplasmic loop of 5-hydroxytryptamine type 3 and α4β2 nicotinic acetylcholine receptors. J. Biol. Chem.281, 8062–8071 (2006). CASPubMed Google Scholar
Swope, S. L., Qu, Z. & Huganir, R. L. Phosphorylation of the nicotinic acetylcholine receptor by protein tyrosine kinases. Ann. NY Acad. Sci.757, 197–214 (1995). CASPubMed Google Scholar
Lee, Y. et al. Rapsyn carboxyl terminal domains mediate muscle specific kinase-induced phosphorylation of the muscle acetylcholine receptor. Neuroscience153, 997–1007 (2008). CASPubMed Google Scholar
Lin, L. et al. The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the α4β2 nicotinic acetylcholine receptor. J. Biol. Chem.277, 41872–41878 (2002). CASPubMed Google Scholar
Kabbani, N., Woll, M. P., Levenson, R., Lindstrom, J. M. & Changeux, J. P. Intracellular complexes of the β2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc. Natl Acad. Sci. USA104, 20570–20575 (2007). CASPubMedPubMed Central Google Scholar
Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol.319, 1165–1176 (2002). CASPubMed Google Scholar
Krebs, W. G. et al. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins48, 682–695 (2002). CASPubMed Google Scholar
Bahar, I. & Rader, A. J. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol.15, 586–592 (2005). CASPubMedPubMed Central Google Scholar
Taly, A. et al. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J.88, 3954–3965 (2005). The first proposal of a gating mechanism of the nAChR channel by a quaternary twist mechanism. CASPubMedPubMed Central Google Scholar
Taly, A. et al. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc. Natl Acad. Sci. USA103, 16965–16970 (2006). CASPubMedPubMed Central Google Scholar
Taly, A. Opened by a twist: a gating mechanism for the nicotinic acetylcholine receptor. Eur. Biophys. J.36, 911–918 (2007). PubMed Google Scholar
Konstantakaki, M., Changeux, J. & Taly, A. Docking of long chain α-cobratoxin suggests a basal state conformation of the nicotinic receptor. Biochem. Biophys. Res. Commun.359, 413–418 (2007). CASPubMed Google Scholar
Samson, A. O. & Levitt, M. Inhibition mechanism of the acetylcholine receptor by α-neurotoxins as revealed by normal-mode dynamics. Biochemistry47, 4065–4070 (2008). CASPubMed Google Scholar
Yi, M., Tjong, H. & Zhou, H. X. Spontaneous conformational change and toxin binding in α7 acetylcholine receptor: insight into channel activation and inhibition. Proc. Natl Acad. Sci. USA105, 8280–8285 (2008). CASPubMedPubMed Central Google Scholar
Hilf, R. J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature457, 115–118 (2009). CASPubMed Google Scholar
Hilf, R. J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature452, 375–379 (2008). The first crystallographic structure to be resolved of a bacterial receptor channel that is homologous to nicotinic receptors. CASPubMed Google Scholar
Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature445, 116–119 (2007). The first demonstration of a functional bacterial receptor channel that is homologous to nicotinic receptors. CASPubMed Google Scholar
Fruchart-Gaillard, C. et al. Experimentally based model of a complex between a snake toxin and the α7 nicotinic receptor. Proc. Natl Acad. Sci. USA99, 3216–3221 (2002). CASPubMedPubMed Central Google Scholar
Lyukmanova, E. N. et al. Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain α-neurotoxins acting on neuronal nicotinic receptors. J. Biol. Chem.282, 24784–24791 (2007). CASPubMed Google Scholar
Gay, E. A., Bienstock, R. J., Lamb, P. W. & Yakel, J. L. Structural determinates for apolipoprotein E-derived peptide interaction with the α7 nicotinic acetylcholine receptor. Mol. Pharmacol.72, 838–849 (2007). CASPubMed Google Scholar
Mordvitsev, D. Y. et al. Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors. Comput. Biol. Chem.31, 72–81 (2007). CASPubMed Google Scholar
Huang, X. et al. Modeling subtype-selective agonists binding with α4β2 and α7 nicotinic acetylcholine receptors: effects of local binding and long-range electrostatic interactions. J. Med. Chem.49, 7661–7674 (2006). CASPubMed Google Scholar
Mordvintsev, D. Y. et al. A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Comput. Biol. Chem.29, 398–411 (2005). CASPubMed Google Scholar
Dutertre, S. & Lewis, R. J. Computational approaches to understand α-conotoxin interactions at neuronal nicotinic receptors. Eur. J. Biochem.271, 2327–2334 (2004). CASPubMed Google Scholar
Dutertre, S., Nicke, A., Tyndall, J. D. & Lewis, R. J. Determination of α-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. J. Mol. Recognit.17, 339–347 (2004). CASPubMed Google Scholar
Jozwiak, K., Ravichandran, S., Collins, J. R. & Wainer, I. W. Interaction of noncompetitive inhibitors with an immobilized α3β4 nicotinic acetylcholine receptor investigated by affinity chromatography, quantitative-structure activity relationship analysis, and molecular docking. J. Med. Chem.47, 4008–4021 (2004). CASPubMed Google Scholar
Dutertre, S., Nicke, A. & Lewis, R. J. β2 subunit contribution to 4/7 α-conotoxin binding to the nicotinic acetylcholine receptor. J. Biol. Chem.280, 30460–30468 (2005). CASPubMed Google Scholar
Ellison, M. et al. α-conotoxins ImI and ImII target distinct regions of the human α7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes. Biochemistry43, 16019–16026 (2004). CASPubMed Google Scholar
Jin, A. H. et al. Molecular engineering of conotoxins: the importance of loop size to α-conotoxin structure and function. J. Med. Chem.51, 5575–5584 (2008). CASPubMed Google Scholar
Konstantakaki, M., Tzartos, S. J., Poulas, K. & Eliopoulos, E. Model of the extracellular domain of the human α7 nAChR based on the crystal structure of the mouse α1 nAChR extracellular domain. J. Mol. Graph. Model26, 1333–1337 (2008). CASPubMed Google Scholar
Rocher, A. & Marchand-Geneste, N. Homology modelling of the Apis mellifera nicotinic acetylcholine receptor (nAChR) and docking of imidacloprid and fipronil insecticides and their metabolites. SAR QSAR Environ. Res.19, 245–261 (2008). CASPubMed Google Scholar
Huang, X., Zheng, F., Crooks, P. A., Dwoskin, L. P. & Zhan, C. G. Modeling multiple species of nicotine and deschloroepibatidine interacting with α4β2 nicotinic acetylcholine receptor: from microscopic binding to phenomenological binding affinity. J. Am. Chem. Soc.127, 14401–14414 (2005). CASPubMedPubMed Central Google Scholar
Artali, R., Bombieri, G. & Meneghetti, F. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP). Farmaco60, 313–320 (2005). CASPubMed Google Scholar
Bisson, W. H., Scapozza, L., Westera, G., Mu, L. & Schubiger, P. A. Ligand selectivity for the acetylcholine binding site of the rat α4β2 and α3β4 nicotinic subtypes investigated by molecular docking. J. Med. Chem.48, 5123–5130 (2005). CASPubMed Google Scholar
Costa, V., Nistri, A., Cavalli, A. & Carloni, P. A structural model of agonist binding to the α3β4 neuronal nicotinic receptor. Br. J. Pharmacol.140, 921–931 (2003). CASPubMedPubMed Central Google Scholar
Han, Z. Y. et al. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci.12, 3664–3674 (2000). CASPubMed Google Scholar
Han, Z. Y. et al. Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]α-bungarotoxin binding sites in the brain of Macaca mulatta. J. Comp. Neurol.461, 49–60 (2003). An extensive analysis of the distribution of the various nicotinic binding sites in a primate brain. CASPubMed Google Scholar
Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y. & Lindstrom, J. Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors. Mol. Pharmacol.63, 332–341 (2003). CASPubMed Google Scholar
Buisson, B. & Bertrand, D. Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function. J. Neurosci.21, 1819–1829 (2001). CASPubMedPubMed Central Google Scholar
Champtiaux, N. et al. Distribution and pharmacology of α6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J. Neurosci.22, 1208–1217 (2002). CASPubMedPubMed Central Google Scholar
Grady, S. R. et al. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem. Pharmacol.74, 1235–1246 (2007). CASPubMedPubMed Central Google Scholar
Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci.29, 3014–3018 (2009). A clear demonstration of the contribution of structural nAChR subunits to nicotine withdrawal symptoms. CASPubMedPubMed Central Google Scholar
Taylor, P. et al. Structure-guided drug design: conferring selectivity among neuronal nicotinic receptor and acetylcholine-binding protein subtypes. Biochem. Pharmacol.74, 1164–1171 (2007). CASPubMedPubMed Central Google Scholar
Huang, X., Zheng, F., Stokes, C., Papke, R. L. & Zhan, C. G. Modeling binding modes of α7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. J. Med. Chem.51, 6293–6302 (2008). CASPubMedPubMed Central Google Scholar
Grosman, C. & Auerbach, A. Kinetic, mechanistic, and structural aspects of unliganded gating of acetylcholine receptor channels: a single-channel study of second transmembrane segment 12′ mutants. J. Gen. Physiol.115, 621–635 (2000). An extensive single-channel analysis of the nAChR gating mechanism, using mutagenesis studies. CASPubMedPubMed Central Google Scholar
Lange, O. F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science320, 1471–1475 (2008). CASPubMed Google Scholar
Tobi, D. & Bahar, I. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl Acad. Sci. USA102, 18908–18913 (2005). CASPubMedPubMed Central Google Scholar
Engel, A. G., Ohno, K. & Sine, S. M. Congenital myasthenic syndromes: a diverse array of molecular targets. J. Neurocytol.32, 1017–1037 (2003). CASPubMed Google Scholar
Cheng, X., Wang, H., Grant, B., Sine, S. M. & McCammon, J. A. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput. Biol.2, e134 (2006). PubMedPubMed Central Google Scholar
Haddadian, E. J., Cheng, M. H., Coalson, R. D., Xu, Y. & Tang, P. In silico models for the human α4β2 nicotinic acetylcholine receptor. J. Phys. Chem. B112, 13981–13990 (2008). CASPubMedPubMed Central Google Scholar
Rubin, M. M. & Changeux, J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J. Mol. Biol.21, 265–274 (1966). CASPubMed Google Scholar
Marshall, C. G., Ogden, D. C. & Colquhoun, D. The actions of suxamethonium (succinyldicholine) as an agonist and channel blocker at the nicotinic receptor of frog muscle. J. Physiol.428, 155–174 (1990). CASPubMedPubMed Central Google Scholar
Lape, R., Colquhoun, D. & Sivilotti, L. G. On the nature of partial agonism in the nicotinic receptor superfamily. Nature454, 722–727 (2008). CASPubMedPubMed Central Google Scholar
Mukhtasimova, N., Lee, W. Y., Wang, H. L. & Sine, S. M. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature459, 451–454 (2009). CASPubMedPubMed Central Google Scholar
Buccafusco, J. J., Beach, J. W. & Terry, A. V. Jr. Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J. Pharmacol. Exp. Ther.328, 364–370 (2009). CASPubMed Google Scholar
Schuller, H. M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nature Rev. Cancer9, 195–205 (2009). CAS Google Scholar
Lefkowitz, R. J., Rajagopal, K. & Whalen, E. J. New roles for β-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol. Cell24, 643–652 (2006). CASPubMed Google Scholar
Kihara, T. et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block Aβ-amyloid-induced neurotoxicity. J. Biol. Chem.276, 13541–13546 (2001). CASPubMed Google Scholar
Buckingham, S. D., Jones, A. K., Brown, L. A. & Sattelle, D. B. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol. Rev.61, 39–61 (2009). A detailed analysis of nicotinic neuroprotection against amyloid-β toxicity. CASPubMedPubMed Central Google Scholar
Miwa, J. M. et al. The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron51, 587–600 (2006). CASPubMed Google Scholar
Kasa, P., Rakonczay, Z. & Gulya, K. The cholinergic system in Alzheimer's disease. Prog. Neurobiol.52, 511–535 (1997). CASPubMed Google Scholar
Court, J. et al. Nicotinic receptor abnormalities in Alzheimer's disease. Biol. Psychiatry49, 175–184 (2001). CASPubMed Google Scholar
Flynn, D. D. & Mash, D. C. Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal. J. Neurochem.47, 1948–1954 (1986). CASPubMed Google Scholar
Whitehouse, P. J. et al. Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res.371, 146–151 (1986). CASPubMed Google Scholar
Aubert, I. et al. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases. J. Neurochem.58, 529–541 (1992). CASPubMed Google Scholar
Bourin, M., Ripoll, N. & Dailly, E. Nicotinic receptors and Alzheimer's disease. Curr. Med. Res. Opin.19, 169–177 (2003). CASPubMed Google Scholar
Nordberg, A. Neuroprotection in Alzheimer's disease — new strategies for treatment. Neurotox. Res.2, 157–165 (2000). CASPubMed Google Scholar
Nordberg, A. et al. Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement. Geriatr. Cogn. Disord.8, 78–84 (1997). CASPubMed Google Scholar
Whitehouse, P. J. & Kalaria, R. N. Nicotinic receptors and neurodegenerative dementing diseases: basic research and clinical implications. Alzheimer Dis. Assoc. Disord.9, S3–S5 (1995). Google Scholar
Guan, Z. Z., Zhang, X., Ravid, R. & Nordberg, A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J. Neurochem.74, 237–243 (2000). CASPubMed Google Scholar
Burghaus, L. et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res. Mol. Brain Res.76, 385–388 (2000). CASPubMed Google Scholar
Newhouse, P. A. et al. Intravenous nicotine in Alzheimer's disease: a pilot study. Psychopharmacology (Berl.)95, 171–175 (1988). CAS Google Scholar
Newhouse, P. A., Potter, A., Corwin, J. & Lenox, R. Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology10, 93–107 (1994). CASPubMed Google Scholar
Newhouse, P. A., Potter, A., Corwin, J. & Lenox, R. Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology (Berl.)108, 480–484 (1992). CAS Google Scholar
Sahakian, B. J. et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain111, 695–718 (1988). PubMed Google Scholar
Sunderland, T., Tariot, P. N. & Newhouse, P. A. Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations. Brain Res.472, 371–389 (1988). CASPubMed Google Scholar
Rusted, J. M., Newhouse, P. A. & Levin, E. D. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease. Behav. Brain Res.113, 121–129 (2000). CASPubMed Google Scholar
Picciotto, M. R. & Zoli, M. Nicotinic receptors in aging and dementia. J. Neurobiol.53, 641–655 (2002). CASPubMed Google Scholar
Wehner, J. M. et al. Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning. Neuroscience129, 11–24 (2004). CASPubMed Google Scholar
Keller, J. J., Keller, A. B., Bowers, B. J. & Wehner, J. M. Performance of α7 nicotinic receptor null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav. Brain Res.162, 143–152 (2005). CASPubMed Google Scholar
Curzon, P. et al. Antisense knockdown of the rat α7 nicotinic acetylcholine receptor produces spatial memory impairment. Neurosci. Lett.410, 15–19 (2006). CASPubMed Google Scholar
Fernandes, C., Hoyle, E., Dempster, E., Schalkwyk, L. C. & Collier, D. A. Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav.5, 433–440 (2006). CASPubMed Google Scholar
Young, J. W. et al. Impaired attention is central to the cognitive deficits observed in α7 deficient mice. Eur. Neuropsychopharmacol.17, 145–155 (2007). CASPubMed Google Scholar
Rezvani, A. H. et al. Effect of R3487/MEM3454, a novel nicotinic α7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry33, 269–275 (2009). CASPubMed Google Scholar
Kitagawa, H. et al. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology28, 542–551 (2003). CASPubMed Google Scholar
Li, X. D. & Buccafusco, J. J. Effect of β-amyloid peptide 1–42 on the cytoprotective action mediated by α7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. J. Pharmacol. Exp. Ther.307, 670–675 (2003). CASPubMed Google Scholar
Meyer, E. M. et al. Neuroprotective and memory-related actions of novel α7 nicotinic agents with different mixed agonist/antagonist properties. J. Pharmacol. Exp. Ther.284, 1026–1032 (1998). CASPubMed Google Scholar
Quik, M. & Kulak, J. M. Nicotine and nicotinic receptors; relevance to Parkinson's disease. Neurotoxicology23, 581–594 (2002). CASPubMed Google Scholar
Kihara, T. et al. Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Ann. Neurol.42, 159–163 (1997). CASPubMed Google Scholar
Martin, S. E., de Fiebre, N. E. & de Fiebre, C. M. The α7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against β-amyloid1-42 toxicity in primary neuron-enriched cultures. Brain Res.1022, 254–256 (2004). CASPubMed Google Scholar
Wang, H. Y., Lee, D. H., Davis, C. B. & Shank, R. P. Amyloid peptide Aβ(1–42) binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J. Neurochem.75, 1155–1161 (2000). CASPubMed Google Scholar
Dineley, K. T. et al. β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci.21, 4125–4133 (2001). CASPubMedPubMed Central Google Scholar
Pettit, D. L., Shao, Z. & Yakel, J. L. β-amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci.21, RC120 (2001). CASPubMedPubMed Central Google Scholar
Spencer, J. P. et al. Transgenic mice over-expressing human β-amyloid have functional nicotinic α7 receptors. Neuroscience137, 795–805 (2006). CASPubMed Google Scholar
Small, D. H. et al. The β-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor. J. Neurochem.101, 1527–1538 (2007). CASPubMed Google Scholar
Lamb, P. W., Melton, M. A. & Yakel, J. L. Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by β-amyloid1–42 peptide. J. Mol. Neurosci.27, 13–21 (2005). CASPubMed Google Scholar
D'Andrea, M. R. & Nagele, R. G. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr. Pharm. Des.12, 677–684 (2006). CASPubMed Google Scholar
Hogg, R. C. & Bertrand, D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol.73, 459–468 (2007). CASPubMed Google Scholar
Lipiello, P. M. et al. Nicotinic receptors as targets for therapeutic discovery. Expert Opin. Drug Discov.2, 1185–1203 (2007). Google Scholar
Curzon, P., Brioni, J. D. & Decker, M. W. Effect of intraventricular injections of dihydro-β-erythroidine (DHβE) on spatial memory in the rat. Brain Res.714, 185–191 (1996). CASPubMed Google Scholar
Cordero-Erausquin, M., Marubio, L. M., Klink, R. & Changeux, J. P. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol. Sci.21, 211–217 (2000). CASPubMed Google Scholar
Blondel, A., Sanger, D. J. & Moser, P. C. Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology (Berl.)149, 293–305 (2000). CAS Google Scholar
Granon, S., Faure, P. & Changeux, J. P. Executive and social behaviors under nicotinic receptor regulation. Proc. Natl Acad. Sci. USA100, 9596–9601 (2003). CASPubMedPubMed Central Google Scholar
Hahn, B., Shoaib, M. & Stolerman, I. P. Involvement of the prefrontal cortex but not the dorsal hippocampus in the attention-enhancing effects of nicotine in rats. Psychopharmacology (Berl.)168, 271–279 (2003). CAS Google Scholar
Potter, A. et al. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer's disease. Psychopharmacology (Berl.)142, 334–342 (1999). CAS Google Scholar
Wilens, T. E. et al. A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am. J. Psychiatry156, 1931–1937 (1999). CASPubMed Google Scholar
Wilens, T. E., Verlinden, M. H., Adler, L. A., Wozniak, P. J. & West, S. A. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol. Psychiatry59, 1065–1070 (2006). CASPubMed Google Scholar
Sharma, T. & Antonova, L. Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr. Clin. North Am.26, 25–40 (2003). PubMed Google Scholar
Adler, L. E., Hoffer, L. J., Griffith, J., Waldo, M. C. & Freedman, R. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol. Psychiatry32, 607–616 (1992). CASPubMed Google Scholar
Freedman, R. et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl Acad. Sci. USA94, 587–592 (1997). CASPubMedPubMed Central Google Scholar
Freedman, R. & Leonard, S. Genetic linkage to schizophrenia at chromosome 15q14. Am. J. Med. Genet.105, 655–657 (2001). CASPubMed Google Scholar
Freedman, R., Hall, M., Adler, L. E. & Leonard, S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychiatry38, 22–33 (1995). CASPubMed Google Scholar
Stevens, K. E. et al. Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology15, 152–162 (1996). CASPubMed Google Scholar
Severance, E. G. & Yolken, R. H. Novel α7 nicotinic receptor isoforms and deficient cholinergic transcription in schizophrenia. Genes Brain Behav.7, 37–45 (2008). CASPubMed Google Scholar
Stevens, K. E. & Wear, K. D. Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol. Biochem. Behav.57, 869–874 (1997). CASPubMed Google Scholar
Simosky, J. K., Stevens, K. E., Adler, L. E. & Freedman, R. Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl.)165, 386–396 (2003). CAS Google Scholar
Levin, E. D., Ellison, G. D., Salem, C., Jarvik, M. & Gritz, E. Behavioral effects of acute hexamethonium in rats chronically intoxicated with nicotine. Physiol. Behav.44, 355–359 (1988). CASPubMed Google Scholar
Depatie, L. et al. Nicotine and behavioral markers of risk for schizophrenia: a double-blind, placebo-controlled, cross-over study. Neuropsychopharmacology27, 1056–1070 (2002). CASPubMed Google Scholar
Rosse, R. B. & Deutsch, S. I. Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin. Neuropharmacol.25, 272–275 (2002). PubMed Google Scholar
Koike, K. et al. Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr. Res.76, 67–72 (2005). PubMed Google Scholar
Martin, L. F. & Freedman, R. Schizophrenia and the α7 nicotinic acetylcholine receptor. Int. Rev. Neurobiol.78, 225–246 (2007). CASPubMed Google Scholar
Olincy, A. et al. Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry63, 630–638 (2006). CASPubMed Google Scholar
Freedman, R. et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am. J. Psychiatry165, 1040–1047 (2008). PubMedPubMed Central Google Scholar
Leiser, S. C., Bowlby, M. R., Comery, T. A. & Dunlop, J. A cog in cognition: how the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. (2009). This article describes the role of α7 nAChR in pro-cognitive effects.
Lieberman, J. A., Javitch, J. A. & Moore, H. Cholinergic agonists as novel treatments for schizophrenia: the promise of rational drug development for psychiatry. Am. J. Psychiatry165, 931–936 (2008). PubMed Google Scholar
Fiore, M. C. et al. Integrating smoking cessation treatment into primary care: an effectiveness study. Prev. Med.38, 412–420 (2004). PubMed Google Scholar
Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol.393, 295–314 (2000). CASPubMed Google Scholar
Corrigall, W. A. & Coen, K. M. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl.)104, 171–176 (1991). CAS Google Scholar
Maskos, U. et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature436, 103–107 (2005). CASPubMed Google Scholar
Mameli-Engvall, M. et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron50, 911–921 (2006). CASPubMed Google Scholar
Pons, S. et al. Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J. Neurosci.28, 12318–12327 (2008). CASPubMedPubMed Central Google Scholar
Balfour, D. J. The neuronal pathways mediating the behavioral and addictive properties of nicotine. Handb. Exp. Pharmacol.192, 209–233 (2009). CAS Google Scholar
Picciotto, M. R. et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature391, 173–177 (1998). CASPubMed Google Scholar
Watkins, S. S., Epping-Jordan, M. P., Koob, G. F. & Markou, A. Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol. Biochem. Behav.62, 743–751 (1999). CASPubMed Google Scholar
Rollema, H. et al. Rationale, pharmacology and clinical efficacy of partial agonists of α4β2 nACh receptors for smoking cessation. Trends Pharmacol. Sci.28, 316–325 (2007). CASPubMed Google Scholar
Besson, M. et al. Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc. Natl Acad. Sci. USA104, 8155–8160 (2007). CASPubMedPubMed Central Google Scholar
Lester, H. A. et al. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J.11, 167–177 (2009). CASPubMedPubMed Central Google Scholar
Exley, R., Clements, M. A., Hartung, H., McIntosh, J. M. & Cragg, S. J. α6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology33, 2158–2166 (2008). CASPubMed Google Scholar
Drenan, R. M. et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity α6 nicotinic acetylcholine receptors. Neuron60, 123–136 (2008). CASPubMedPubMed Central Google Scholar
Hung., R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature452, 633–637 (2008). CASPubMed Google Scholar
Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature452, 638–642 (2008). CASPubMedPubMed Central Google Scholar
Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet.40, 616–622 (2008). CASPubMed Google Scholar
Salas, R., Pieri, F. & De Biasi, M. Decreased signs of nicotine withdrawal in mice null for the β4 nicotinic acetylcholine receptor subunit. J. Neurosci.24, 10035–10039 (2004). CASPubMedPubMed Central Google Scholar
Janowsky, D. S., el-Yousef, M. K., Davis, J. M. & Sakerke, H. J. A cholinergic-adrenergic hypothesis of mania and depression. Lancet2, 632–635 (1972). CASPubMed Google Scholar
Shytle, R. D. et al. Nicotinic acetylcholine receptors as targets for antidepressants. Mol. Psychiatry7, 525–535 (2002). CASPubMed Google Scholar
Garcia-Colunga, J., Awad, J. N. & Miledi, R. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc. Natl Acad. Sci. USA94, 2041–2044 (1997). CASPubMedPubMed Central Google Scholar
Hennings, E. C., Kiss, J. P. & Vizi, E. S. Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res.759, 292–294 (1997). CASPubMed Google Scholar
Maggi, L., Palma, E., Miledi, R. & Eusebi, F. Effects of fluoxetine on wild and mutant neuronal α7 nicotinic receptors. Mol. Psychiatry3, 350–355 (1998). CASPubMed Google Scholar
Fryer, J. D. & Lukas, R. J. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J. Neurochem.72, 1117–1124 (1999). CASPubMed Google Scholar
Hennings, E. C., Kiss, J. P., De Oliveira, K., Toth, P. T. & Vizi, E. S. Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J. Neurochem.73, 1043–1050 (1999). CASPubMed Google Scholar
Kiss, J. P., Hennings, E. C., De Oliveira, K., Toth, P. T. & Vizi, E. S. Nicotinic acetylcholine receptor antagonistic activity of the selective dopamine uptake blocker GBR-12909 in rat hippocampal slices. J. Physiol.526 (2000).
Charles, H. C. et al. Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry18, 1121–1127 (1994). CASPubMed Google Scholar
Steingard, R. J. et al. Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by in vivo proton magnetic resonance spectroscopy. Biol. Psychiatry48, 1053–1061 (2000). CASPubMed Google Scholar
Popik, P., Kozela, E. & Krawczyk, M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram. Br. J. Pharmacol.139, 1196–1202 (2003). CASPubMedPubMed Central Google Scholar
Rabenstein, R. L., Caldarone, B. J. & Picciotto, M. R. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl.)189, 395–401 (2006). CAS Google Scholar
Mineur, Y. S., Somenzi, O. & Picciotto, M. R. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/56J mice. Neuropharmacology52, 1256–1262 (2007). CASPubMedPubMed Central Google Scholar
Andreasen, J. T., Olsen, G. M., Wiborg, O. & Redrobe, J. P. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J. Psychopharmacol. (doi:10.1177/0269881108091587) (2008). PubMed Google Scholar
Shytle, R. D., Silver, A. A. & Sanberg, P. R. Comorbid bipolar disorder in Tourette's syndrome responds to the nicotinic receptor antagonist mecamylamine (Inversine). Biol. Psychiatry48, 1028–1031 (2000). CASPubMed Google Scholar
Shytle, R. D., Silver, A. A., Sheehan, K. H., Sheehan, D. V. & Sanberg, P. R. Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress. Anxiety16, 89–92 (2002). PubMed Google Scholar
McClernon, F. J., Hiott, F. B., Westman, E. C., Rose, J. E. & Levin, E. D. Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacology (Berl.)189, 125–133 (2006). CAS Google Scholar
George, T. P., Sacco, K. A., Vessicchio, J. C., Weinberger, A. H. & Shytle, R. D. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J. Clin. Psychopharmacol.28, 340–344 (2008). PubMed Google Scholar
Fedorov, N., Moore, L., Gatto, G., Jordan, K. & Bencherif, M. Differential effects of TC-5214 [S-(+)-mecamylamine] and TC-5213 [R-(-)-mecamylamine] at low and high sensitivity human α4β2 nicotinic receptors and in animal models of depression and anxiety. The Society for Neuroscience, abstr. 39.2 (2007).
Marubio, L. M. et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature398, 805–810 (1999). CASPubMed Google Scholar
Damaj, M. I. Nicotinic regulation of calcium/calmodulin-dependent protein kinase II activation in the spinal cord. J. Pharmacol. Exp. Ther.320, 244–249 (2007). CASPubMed Google Scholar
Cordero-Erausquin, M. & Changeux, J. P. Tonic nicotinic modulation of serotoninergic transmission in the spinal cord. Proc. Natl Acad. Sci. USA98, 2803–2807 (2001). CASPubMedPubMed Central Google Scholar
Donnelly-Roberts, D. L. et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization. J. Pharmacol. Exp. Ther.285, 777–786 (1998). CASPubMed Google Scholar
Bannon, A. W. et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science279, 77–81 (1998). CASPubMed Google Scholar
Decker, M. W. et al. The role of neuronal nicotinic acetylcholine receptors in antinociception: effects of ABT-594. J. Physiol. Paris92, 221–224 (1998). CASPubMed Google Scholar
Bitner, R. S. et al. Role of the nucleus raphe magnus in antinociception produced by ABT-594: immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. J. Neurosci.18, 5426–5432 (1998). CASPubMedPubMed Central Google Scholar
Decker, M. W. & Meyer, M. D. Therapeutic potential of neuronal nicotinic acetylcholine receptor agonists as novel analgesics. Biochem. Pharmacol.58, 917–923 (1999). CASPubMed Google Scholar
Ji, J. et al. A-366833: a novel nicotinonitrile-substituted 3,6-diazabicyclo[3.2.0]-heptane α4β2 nicotinic acetylcholine receptor selective agonist: synthesis, analgesic efficacy and tolerability profile in animal models. Biochem. Pharmacol.74, 1253–1262 (2007). CASPubMed Google Scholar
Clark, R. J., Fischer, H., Nevin, S. T., Adams, D. J. & Craik, D. J. The synthesis, structural characterization, and receptor specificity of the a-conotoxin Vc1.1. J. Biol. Chem.281, 23254–23263 (2006). CASPubMed Google Scholar
Ellison, M. et al. α-RgIA: a novel conotoxin that specifically and potently blocks the α9α10 nAChR. Biochemistry45, 1511–1517 (2006). CASPubMed Google Scholar
Peng, C. et al. Discovery of a novel class of conotoxin from Conus litteratus, lt14a, with a unique cysteine pattern. Peptides27, 2174–2181 (2006). CASPubMed Google Scholar
Clark, R. J. et al. The three-dimensional structure of the analgesic α-conotoxin, RgIA. FEBS Lett.582, 597–602 (2008). CASPubMed Google Scholar
Ellison, M. et al. α-RgIA, a novel conotoxin that blocks the α9α10 nAChR: structure and identification of key receptor-binding residues. J. Mol. Biol.377, 1216–1227 (2008). CASPubMedPubMed Central Google Scholar
Satkunanathan, N. et al. α-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res.1059, 149–158 (2005). CASPubMed Google Scholar
Vincler, M. et al. Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. Proc. Natl Acad. Sci. USA103, 17880–17884 (2006). CASPubMedPubMed Central Google Scholar
Nevin, S. T. et al. Are α9α10 nicotinic acetylcholine receptors a pain target for α-conotoxins? Mol. Pharmacol.72, 1406–1410 (2007). CASPubMed Google Scholar
Callaghan, B. et al. Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J. Neurosci.28, 10943–10951 (2008). CASPubMedPubMed Central Google Scholar
Livingstone, P. D. et al. α7 and non-α7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur. J. Neurosci.29, 539–550 (2009). PubMed Google Scholar
Wonnacott, S. Gates and filters: unveiling the physiological roles of nicotine receptors in dopaminergic transmission. Br. J. Pharmacol.153, S2–S4 (2008). This article analyses the role of nAChRs in dopaminergic signalling. CASPubMedPubMed Central Google Scholar
Schapira, A. H. V. et al. Novel pharmacological targets for the treatment of Parkinson's disease. Nature Rev. Drug Discov.5 845–854 (2006). CAS Google Scholar
Janhunen, S. & Ahtee, L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci. Biobehav. Rev.31, 287–314 (2007). CASPubMed Google Scholar
Granon, S. & Changeux, J. P. Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr.95, 645–649 (2006). PubMed Google Scholar
Sullivan, J. P. et al. ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine]: I. A potent and selective cholinergic channel modulator with neuroprotective properties. J. Pharmacol. Exp. Ther.283, 235–246 (1997). CASPubMed Google Scholar
Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. Defunctionalized lobeline analogues: structure-activity of novel ligands for the vesicular monoamine transporter. J. Med. Chem.48, 5551–5560 (2005). CASPubMedPubMed Central Google Scholar
Cartaud, J., Benedetti, E. L., Cohen, J. B., Meunier, J. C. & Changeux, J. P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett.33, 109–113 (1973). CASPubMed Google Scholar
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol.346, 967–989 (2005). CASPubMed Google Scholar
Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature423, 949–955 (2003). This paper provided the first 4-Å resolution structure of the transmembrane domain of nAChRs. CASPubMed Google Scholar
Blanton, M. P. & Cohen, J. B. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry33, 2859–2872 (1994). CASPubMed Google Scholar
Tasneem, A., Iyer, L. M., Jakobsson, E. & Aravind, L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol.6, R4 (2005). PubMed Google Scholar
Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z. Z. & Chen, L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nature Neurosci.10, 953–962 (2007). CASPubMed Google Scholar
Jansen, M., Bali, M. & Akabas, M. H. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA ρ1 receptors lacking the large cytoplasmic M3M4 loop. J. Gen. Physiol.131, 137–146 (2008). CASPubMedPubMed Central Google Scholar
Hucho, F., Oberthur, W. & Lottspeich, F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett.205, 137–142 (1986). CASPubMed Google Scholar
Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature335, 645–648 (1988). CASPubMed Google Scholar
Galzi, J. L. et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature359, 500–505 (1992). CASPubMed Google Scholar
Corringer, P. J. et al. Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand-gated ion channels. Novartis Found. Symp.225, 215–224; discussion 224–30 (1999). CASPubMed Google Scholar
Wotring, V. E. & Weiss, D. S. Charge scan reveals an extended region at the intracellular end of the GABA receptor pore that can influence ion selectivity. J. Gen. Physiol.131, 87–97 (2008). CASPubMedPubMed Central Google Scholar
Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol.86, 161–204 (2004). CASPubMed Google Scholar
Sunesen, M. et al. Mechanism of Cl− selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. J. Biol. Chem.281, 14875–14881 (2006). CASPubMed Google Scholar
Gunthorpe, M. J. & Lummis, S. C. Conversion of the ion selectivity of the 5-HT3a receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem.276, 10977–10983 (2001). CASPubMed Google Scholar
Corringer, P. J. et al. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron22, 831–843 (1999). CASPubMed Google Scholar
Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S. & Changeux, J. P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc. Natl Acad. Sci. USA90, 6971–6975 (1993). CASPubMedPubMed Central Google Scholar
Changeux, J. P. Allosteric interactions interpreted in terms of quaternary structure. Brookhaven Symp. Biol.17, 232–249 (1964). CASPubMed Google Scholar
Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci.17, 1295–1307 (2008). A recent review of the relevance of the concept of allostery in molecular dynamics studies. CASPubMedPubMed Central Google Scholar
Adair, G. S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem.63, 529–545 (1925). CAS Google Scholar
Koshland, D. E. Jr. Correlation of structure and function in enzyme action. Science142, 1533–1541 (1963). CASPubMed Google Scholar
Colquhoun, D. & Sakmann, B. From muscle endplate to brain synapses: a short history of synapses and agonist-activated ion channels. Neuron20, 381–387 (1998). CASPubMed Google Scholar
Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol.12, 88–118 (1965). CASPubMed Google Scholar
Katz, B. & Thesleff, S. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol.138, 63–80 (1957). CASPubMedPubMed Central Google Scholar
Bouzat, C., Bartos, M., Corradi, J. & Sine, S. M. The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization. J. Neurosci.28, 7808–7819 (2008). CASPubMedPubMed Central Google Scholar
White, B. H. & Cohen, J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J. Biol. Chem.267, 15770–15783 (1992). CASPubMed Google Scholar
Le Novere, N., Corringer, P. J. & Changeux, J. P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol.53, 447–456 (2002). CASPubMed Google Scholar
Gotti, C., Zoli, M. & Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci.27, 482–491 (2006). CASPubMed Google Scholar
Biton, B. et al. SSR180711, a novel selective α7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology32, 1–16 (2007). CASPubMed Google Scholar
Sydserff, S. et al. Selective α7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem. Pharmacol. 22 Apr 2009 (doi:10.1016/j.bcp.2009.07.005). CASPubMed Google Scholar
Lopez-Hernandez, G. et al. Partial agonist and neuromodulatory activity of S 24795 for α7 nAChR responses of hippocampal interneurons. Neuropharmacology53, 134–144 (2007). CASPubMed Google Scholar
Hauser, T. A. et al. TC-5619: an α7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem. Pharmacol. 24 Mar 2009 (doi:10.1016/j.bcp.2009.05.030). CASPubMedPubMed Central Google Scholar
Cohen, C. et al. SSR591813, a novel selective and partial α4β2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther.306, 407–420 (2003). CASPubMed Google Scholar
Dunbar, G. et al. Pharmacokinetics and safety profile of ispronicline (TC-1734), a new brain nicotinic receptor partial agonist, in young healthy male volunteers. J. Clin. Pharmacol.46, 715–726 (2006). CASPubMed Google Scholar
Lippiello, P. M. et al. TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci. Ther.14, 266–277 (2008). CASPubMedPubMed Central Google Scholar
Dziewczapolski, G., Glogowski, C. M., Masliah, E. & Heinemann, S. F. Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J. Neurosci.29, 8805–8815 (2009). CASPubMedPubMed Central Google Scholar
Jackson, K. J., Martin, B. R., Changeux, J. P. & Damaj, M. I. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J. Pharmacol. Exp. Ther.325, 302–312 (2008). CASPubMed Google Scholar