Probing the links between in vitro potency, ADMET and physicochemical parameters (original) (raw)

References

  1. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug. Discov. 5, 993–996 (2006).
    Article CAS Google Scholar
  2. Li, D. & Kerns, E. H. Application of pharmaceutical profiling assays for optimization of druglike properties. Curr. Opin. Drug Discov. Devel. 8, 495–504 (2005).
    Google Scholar
  3. Peck, R. W. Driving earlier clinical attrition: if you want to find the needle, burn down the haystack. Considerations for biomarker development. Drug Discov. Today 12, 289–294 (2006).
    Article Google Scholar
  4. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).
    Article CAS Google Scholar
  5. Kalgutkar, A. S. et al. A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug Metabol. 6, 161–225 (2005).
    Article CAS Google Scholar
  6. Keseru, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203–212 (2009).
    Article Google Scholar
  7. Lackey, K. Lessons from the drug discovery of lapatinib, a dual ErbB1/2 tyrosine kinase inhibitor. Curr. Topics Med. Chem. 6, 435–460 (2006).
    Article CAS Google Scholar
  8. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997). This paper highlighted for the first time the link between drug-likeness and key physicochemical properties (that is, the rule of 5).
    Article CAS Google Scholar
  9. Teague, S. J., Davis, A. M., Leeson, P. D &, Oprea. T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 38, 3743–3748 (1999).
    Article CAS Google Scholar
  10. Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (1999).
    Article Google Scholar
  11. Leeson, P. D., Davis, A. M. & Steele, J. Drug-like properties: guiding principles for design — or chemical prejudice? Drug Discov. Today 1, 189–195 (2004).
    Article CAS Google Scholar
  12. Lajiness, M. S., Vieth, M. & Erickson, J. Molecular properties that influence oral drug-like behaviour. Curr. Opin. Drug Disc. Devel. 7, 470–477 (2004).
    CAS Google Scholar
  13. Hann, M. M. & Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 8, 255–263 (2004).
    Article CAS Google Scholar
  14. Leeson, P. D. & Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47, 6338–6348 (2004).
    Article CAS Google Scholar
  15. Li, D. & Kerns, E. H. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov. Today 11, 446–451 (2006).
    Article Google Scholar
  16. Wunberg, T. et al. Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov. Today 11, 175–180 (2006).
    Article CAS Google Scholar
  17. De Witte, R. S. Avoiding physicochemical artefacts in early ADME–Tox experiments. Drug Discov. Today 11, 855–859 (2006).
    Article CAS Google Scholar
  18. Leeson, P. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007). An excellent paper that describes, with well-chosen examples, the importance of physicochemical properties in medicinal chemistry research.
    Article CAS Google Scholar
  19. Proudfoot, J. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 15, 1087–1090 (2005).
    Article CAS Google Scholar
  20. Johnson, T. J., Dress, K. R. & Edwards, M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 19, 5560–5564 (2009).
    Article CAS Google Scholar
  21. Waring, M. J. Defining optimum lipophilicity and molecular weight ranges for drug candidates — molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844–2851 (2009).
    Article CAS Google Scholar
  22. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).
    Article Google Scholar
  23. Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834 (2008). An interesting paper that assesses the link between molecular mass, logP and ionization state for a range of ADMET parameters that are routinely measured in industry.
    Article CAS Google Scholar
  24. Sneader, W. Drug Prototypes and their Exploitation. (Wiley, Chichester, 1996).
    Google Scholar
  25. Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315 (2001).
    Article CAS Google Scholar
  26. Hadjuk, P. J. Fragment-based drug design: how big is too big? J. Med. Chem. 49, 6972–6976 (2006). This paper highlighted the benefits of selecting the most ligand-efficient molecular templates in lead generation.
    Article Google Scholar
  27. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003). This study showed that, as compounds in different phases of development get closer to the market, their mean molecular mass and logP tend to converge towards those of marketed drugs.
    Article CAS Google Scholar
  28. Tyrchana, C., Blomberga, N., Engkvista, O., Kogeja, T. & Muresan, S. Physicochemical property profiles of marketed drugs, clinical candidates and bioactive compounds. Bioorg. Med. Chem. Lett. 19, 6943–6947 (2009).
    Article Google Scholar
  29. Oprea, T. I. et al. Lead-like, drug-like or ''pub-like'': how different are they? J. Comput. Aided Mol. Des. 21, 113–119 (2007).
    Article CAS Google Scholar
  30. Andrews, P. R., Craik, D. J. & Martin, J. L. Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657 (1984).
    Article CAS Google Scholar
  31. Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman P. A. The maximal affinity of ligands. Proc. Natl Acad. Sci. USA 96, 9997–10002 (1999).
    Article CAS Google Scholar
  32. Abad-Zapatero, C. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10, 464–469 (2005).
    Article Google Scholar
  33. Perola, E. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. J. Med. Chem. 53, 2986–2997 (2010).
    Article CAS Google Scholar
  34. Hadjuk, P. J., Huth, J. R. & Tse, C. Predicting protein druggability. Drug Discov. Today 10, 1675–1682 (2005).
    Article Google Scholar
  35. Vieth, M. & Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem. 49, 3451–3453 (2009).
    Article Google Scholar
  36. Goh, K. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–6690 (2007).
    Article CAS Google Scholar
  37. Zimmermann, G. R., Lehár, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).
    Article CAS Google Scholar
  38. Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).
    Article CAS Google Scholar
  39. Morphy, R. & Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today 12, 156–160 (2007).
    Article CAS Google Scholar
  40. Azzaoui, K. et al. Modeling promiscuity based on in vitro safety pharmacology profiling data. Chem. Med. Chem. 2, 874–880.
  41. Peters, J. U., Schnider, P., Mattei, P. & Kansy, M. Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent Roche compounds. Chem. Med. Chem. 4, 680–186 (2009).
    Article CAS Google Scholar
  42. Davis, A. M., Keeling, D. J., Steele, J., Tomkinson, N. P. & Tinker, A. C. Components of successful lead generation. Curr. Topics Med. Chem. 5, 421–439 (2005).
    Article CAS Google Scholar
  43. Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978 (2006).
    Article CAS Google Scholar
  44. McGinnity, D. F., Collington, J., Austin, R. P. & Riley, R. J. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs. Curr. Drug Metab. 8, 463–479 (2007).
    Article CAS Google Scholar
  45. Jeffrey, P. & Summerfield, S. Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol. Dis. 37, 33–37 (2010).
    Article CAS Google Scholar
  46. Summerfield, S. G. et al. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J. Pharmacol. Exp. Ther. 316, 1282–1290 (2006).
    Article CAS Google Scholar
  47. Watson, J. et al. Receptor occupancy and brain free fraction. Drug. Metab. Dispos. 37, 753–760 (2009).
    Article CAS Google Scholar
  48. Hopkins, A. L. Network pharmacology. Nature Biotech. 11, 1110–1111 (2007).
    Article Google Scholar
  49. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug-target network. Nature Biotech. 25, 1119–1126 (2007).
    Article CAS Google Scholar
  50. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol. 4, 682–690 (2008).
    Article CAS Google Scholar
  51. Janga, S. C. & Tzakos, A. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Mol. Biosyst. 5, 1536–1548 (2009).
    Article CAS Google Scholar
  52. Congreve, M. A 'Rule of Three' for fragment-based lead discovery? Drug Discov. Today 8, 876–877 (2003).
    Article Google Scholar
  53. Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug–target residence time and its implications for lead optimization. Nature Rev. Drug Discov. 5, 730–739 (2006). This paper discusses issues associated with current biochemical screening technologies, and advocates the assessment of receptor off-rates to facilitate the optimization of compound efficacy.
    Article CAS Google Scholar
  54. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).
    Article CAS Google Scholar
  55. Ekins, S. & Williams, A. J. Reaching out to collaborators: crowdsourcing for pharmaceutical research. Pharm. Res. 27, 393–395 (2010).
    Article CAS Google Scholar
  56. Young, D., Martin, T., Venkatapathy, R. & Harten, P. Are the chemical structures in your QSAR correct? QSAR Comb. Sci. 27, 1337–1345 (2008).
    Article CAS Google Scholar
  57. Fourches, D., Muratov, E. & Tropsha, A. Trust, but verify: on the importance of chemical structure cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50, 1189–1204 (2010).
    Article CAS Google Scholar
  58. Daugan, A. et al. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 1:5,6,11,11a-tetrahydro-1H-imidazo[1'5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione analogues. J. Med. Chem. 46, 4525–4532 (2003).
    Article CAS Google Scholar
  59. Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I. & Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 40, 127–130 (1992).
    Article CAS Google Scholar

Download references