- Rask-Andersen, M., Almen, M. S. & Schioth, H. B. Trends in the exploitation of novel drug targets. Nature Rev. Drug. Discov. 10, 579–590 (2011).
CAS Google Scholar
- Lefkowitz, R. J. Seven transmembrane receptors: something old, something new. Acta Physiol. (Oxf.) 190, 9–19 (2007).
CAS Google Scholar
- Oldham, W. M. & Hamm, H. E. How do receptors activate G proteins? Adv. Protein Chem. 74, 67–93 (2007).
CAS PubMed Google Scholar
- Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).
CAS PubMed Google Scholar
- Ahmadian, M., Duncan, R. E. & Sul, H. S. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009).
CAS PubMed PubMed Central Google Scholar
- Bezaire, V. & Langin, D. Regulation of adipose tissue lipolysis revisited. Proc. Nutr. Soc. 68, 350–360 (2009).
CAS PubMed Google Scholar
- Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nature Rev. Drug. Discov. 8, 369–385 (2009). This is an excellent review on the role of GPCRs in the regulation of pancreatic β -cells and their established or potential roles as targets for antidiabetic drugs.
CAS Google Scholar
- Engelstoft, M. S., Egerod, K. L., Holst, B. & Schwartz, T. W. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell. Metab. 8, 447–449 (2008).
CAS PubMed Google Scholar
- Reimann, F., Tolhurst, G. & Gribble, F. M. G-protein-coupled receptors in intestinal chemosensation. Cell. Metab. 15, 421–431 (2012). This is an excellent review on the role of GPCRs in enteric cells and their function in the regulation of metabolic processes.
CAS PubMed Google Scholar
- Rocha, V. Z. & Libby, P. Obesity, inflammation, and atherosclerosis. Nature Rev. Cardiol. 6, 399–409 (2009).
CAS Google Scholar
- Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).
CAS PubMed PubMed Central Google Scholar
- Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).
CAS PubMed Google Scholar
- Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nature Med. 18, 363–374 (2012).
CAS PubMed Google Scholar
- Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).
CAS PubMed Google Scholar
- Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol. Rev. 63, 59–126 (2011).
CAS PubMed Google Scholar
- Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).
CAS Google Scholar
- Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).
CAS Google Scholar
- Servant, G., Tachdjian, C., Li, X. & Karanewsky, D. S. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor. Trends Pharmacol. Sci. 32, 631–636 (2011). This is an excellent review on the development and properties of positive allosteric modulators of the sweet receptor.
CAS PubMed Google Scholar
- Nie, Y., Vigues, S., Hobbs, J. R., Conn, G. L. & Munger, S. D. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 15, 1948–1952 (2005).
CAS PubMed Google Scholar
- Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).
CAS Google Scholar
- Jiang, P. et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J. Biol. Chem. 280, 34296–34305 (2005).
CAS Google Scholar
- Liu, B. et al. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners. J. Neurosci. 31, 11070–11076 (2011).
CAS PubMed PubMed Central Google Scholar
- Zhang, F. et al. Molecular mechanism for the umami taste synergism. Proc. Natl Acad. Sci. USA 105, 20930–20934 (2008).
CAS PubMed Google Scholar
- Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).
CAS PubMed Google Scholar
- Jang, H. J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA 104, 15069–15074 (2007).
CAS PubMed Google Scholar
- Kokrashvili, Z., Mosinger, B. & Margolskee, R. F. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann. NY Acad. Sci. 1170, 91–94 (2009).
CAS PubMed Google Scholar
- Gerspach, A. C., Steinert, R. E., Schonenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, E317–E325 (2011).
CAS PubMed Google Scholar
- Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA 104, 15075–15080 (2007).
CAS PubMed Google Scholar
- Reimann, F. et al. Glucose sensing in L-cells: a primary cell study. Cell. Metab. 8, 532–539 (2008).
CAS PubMed PubMed Central Google Scholar
- Bezencon, C., le Coutre, J. & Damak, S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32, 41–49 (2007).
CAS PubMed Google Scholar
- Parker, H. E., Reimann, F. & Gribble, F. M. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert. Rev. Mol. Med. 12, e1 (2010).
PubMed Google Scholar
- Kyriazis, G. A., Soundarapandian, M. M. & Tyrberg, B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl Acad. Sci. USA 109, E524–E532 (2012).
CAS PubMed Google Scholar
- Shigemura, R. et al. Compositions comprising sweetness enhancers and methods of making them. WO Patent 2010/014813 (A2) (2010).
- Servant, G. et al. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste. Proc. Natl Acad. Sci. USA 107, 4746–4751 (2010).
CAS PubMed Google Scholar
- Zhang, F. et al. Molecular mechanism of the sweet taste enhancers. Proc. Natl Acad. Sci. USA 107, 4752–4757 (2010).
CAS PubMed Google Scholar
- Jiang, P. et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem. 280, 15238–15246 (2005).
CAS Google Scholar
- Unger, R. H. The physiology of cellular liporegulation. Annu. Rev. Physiol. 65, 333–347 (2003).
CAS PubMed Google Scholar
- Hara, T., Hirasawa, A., Ichimura, A., Kimura, I. & Tsujimoto, G. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J. Pharm. Sci. 100, 3594–3601 (2011).
CAS PubMed Google Scholar
- Briscoe, C. P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).
CAS PubMed Google Scholar
- Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173–176 (2003).
CAS PubMed Google Scholar
- Kotarsky, K., Nilsson, N. E., Flodgren, E., Owman, C. & Olde, B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem. Biophys. Res. Commun. 301, 406–410 (2003).
CAS PubMed Google Scholar
- Edfalk, S., Steneberg, P. & Edlund, H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57, 2280–2287 (2008).
CAS PubMed PubMed Central Google Scholar
- Hirasawa, A. et al. Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem. Biophys. Res. Commun. 365, 22–28 (2008).
CAS PubMed Google Scholar
- Cartoni, C. et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30, 8376–8382 (2010). This paper provides the first description that FFA1 (GPR40) and GPR120 are involved in taste perception and mediate the taste of fatty acids.
CAS PubMed Google Scholar
- Ma, D. et al. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res. 58, 394–401 (2007).
CAS PubMed Google Scholar
- Tomita, T. et al. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia 49, 962–968 (2006).
CAS PubMed Google Scholar
- Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M. D. & Edlund, H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell. Metab. 1, 245–258 (2005).
CAS PubMed Google Scholar
- Kebede, M. et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57, 2432–2437 (2008).
CAS PubMed PubMed Central Google Scholar
- Tan, C. P. et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 57, 2211–2219 (2008).
CAS PubMed PubMed Central Google Scholar
- Latour, M. G. et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56, 1087–1094 (2007).
CAS PubMed PubMed Central Google Scholar
- Briscoe, C. P. et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619–628 (2006).
CAS PubMed PubMed Central Google Scholar
- Song, F. et al. Synthesis and biological evaluation of 3-aryl-3-(4-phenoxy)-propionic acid as a novel series of G protein-coupled receptor 40 agonists. J. Med. Chem. 50, 2807–2817 (2007).
CAS PubMed Google Scholar
- Nagasumi, K. et al. Overexpression of GPR40 in pancreatic β-cells augments glucose stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58, 1067–1076 (2009).
CAS PubMed PubMed Central Google Scholar
- Kebede, M. et al. Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent _O_-GlcNAcylation of pancreas-duodenum homeobox-1. Proc. Natl Acad. Sci. USA 109, 2376–2381 (2012).
CAS PubMed Google Scholar
- Garrido, D. M. et al. Synthesis and activity of small molecule GPR40 agonists. Bioorg. Med. Chem. Lett. 16, 1840–1845 (2006).
CAS PubMed Google Scholar
- Christiansen, E. et al. Structure–activity study of dihydrocinnamic acids and discovery of the potent FFA1 (GPR40) agonist TUG-469. ACS Med. Chem. Lett. 1, 345–349 (2010).
CAS PubMed PubMed Central Google Scholar
- Christiansen, E. et al. Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J. Med. Chem. 54, 6691–6703 (2011).
CAS PubMed Google Scholar
- Walsh, S. P. et al. 3-substituted 3-(4-aryloxyaryl)-propanoic acids as GPR40 agonists. Bioorg. Med. Chem. Lett. 21, 3390–3394 (2011).
CAS PubMed Google Scholar
- Lin, D. C. et al. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS ONE 6, e27270 (2011).
CAS PubMed PubMed Central Google Scholar
- Houze, J. B. et al. AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg. Med. Chem. Lett. 22, 1267–1270 (2012).
CAS Google Scholar
- Tsujihata, Y. et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid. receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 339, 228–237 (2011).
CAS PubMed Google Scholar
- Sasaki, S. et al. Design, synthesis, and biological activity of potent and orally available G protein-coupled receptor 40 agonists. J. Med. Chem. 54, 1365–1378 (2011).
CAS PubMed Google Scholar
- Negoro, N. et al. Identification of fused-ring alkanoic acids with improved pharmacokinetic profiles that act as G protein-coupled receptor 40/free fatty acid receptor 1 agonists. J. Med. Chem. 55, 1538–1552 (2012).
CAS PubMed Google Scholar
- Negoro, N. et al. Optimization of (2,3-dihydro-1-benzofuran-3-yl)acetic acids: discovery of a non-free fatty acid-like, highly bioavailable G protein-coupled receptor 40/free fatty acid receptor 1 agonist as a glucose-dependent insulinotropic agent. J. Med. Chem. 55, 3960–3974 (2012).
CAS PubMed Google Scholar
- Mikami, S. et al. Discovery of phenylpropanoic acid derivatives containing polar functionalities as potent and orally bioavailable G protein-coupled receptor 40 agonists for the treatment of type 2 diabetes. J. Med. Chem. 55, 3756–3776 (2012).
CAS PubMed Google Scholar
- Burant, C. F. et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a Phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379, 1403–1411 (2012). This is the first report on a Phase II clinical trial of a synthetic FFA1 agonist showing glucose-lowering effects that were comparable to those of a sulphonylurea but with less tendency to produce hypoglycaemia.
CAS PubMed Google Scholar
- Stoddart, L. A., Brown, A. J. & Milligan, G. Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5′-_O_-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol. Pharmacol. 71, 994–1005 (2007).
CAS PubMed Google Scholar
- Smith, N. J., Stoddart, L. A., Devine, N. M., Jenkins, L. & Milligan, G. The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J. Biol. Chem. 284, 17527–17539 (2009).
CAS PubMed PubMed Central Google Scholar
- Zhou, C. et al. Discovery of 5-aryloxy-2,4-thiazolidinediones as potent GPR40 agonists. Bioorg. Med. Chem. Lett. 20, 1298–1301 (2010).
CAS PubMed Google Scholar
- Hu, H. et al. A novel class of antagonists for the FFAs receptor GPR40. Biochem. Biophys. Res. Commun. 390, 557–563 (2009).
CAS PubMed Google Scholar
- Tikhonova, I. G. et al. Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J. Med. Chem. 51, 625–633 (2008).
CAS PubMed PubMed Central Google Scholar
- Humphries, P. S. et al. Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg. Med. Chem. Lett. 19, 2400–2403 (2009).
CAS PubMed Google Scholar
- Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Med. 11, 90–94 (2005).
CAS Google Scholar
- Moore, K., Zhang, Q., Murgolo, N., Hosted, T. & Duffy, R. Cloning, expression, and pharmacological characterization of the GPR120 free fatty acid receptor from cynomolgus monkey: comparison with human GPR120 splice variants. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 154, 419–426 (2009).
PubMed Google Scholar
- Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).
CAS PubMed Google Scholar
- Watson, S. J., Brown, A. J. & Holliday, N. Differential signalling by splice variants of the human free fatty acid receptor, GPR120. Mol. Pharmacol. 81, 631–642 (2012).
CAS PubMed PubMed Central Google Scholar
- Gotoh, C. et al. The regulation of adipogenesis through GPR120. Biochem. Biophys. Res. Commun. 354, 591–597 (2007).
CAS PubMed Google Scholar
- Oh Da, Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010). This is the first description of GPR120 as a receptor for omega-3 fatty acids that mediates anti-inflammatory and insulin-sensitizing effects.
PubMed Google Scholar
- Miyauchi, S. et al. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch. Pharmacol. 379, 427–434 (2009).
CAS PubMed Google Scholar
- Talukdar, S., Olefsky, J. M. & Osborn, O. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol. Sci. 32, 543–550 (2011).
CAS PubMed PubMed Central Google Scholar
- Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012). This is the first report showing that dysfunction of GPR120 promotes insulin resistance and obesity in mice and humans. This study also reports on a missense mutation in the human receptor, which interferes with GPR120-mediated signalling and is strongly correlated with an increased risk of developing obesity.
CAS PubMed Google Scholar
- Sun, Q. et al. Structure–activity relationships of GPR120 agonists based on a docking simulation. Mol. Pharmacol. 78, 804–810 (2010).
CAS PubMed Google Scholar
- Shimpukade, B., Hudson, B. D., Hovgaard, C. K., Milligan, G. & Ulven, T. Discovery of a potent and selective GPR120 agonist. J. Med. Chem. 55, 4511–4515 (2012).
CAS PubMed Google Scholar
- Shi, D. F. et al. GPR120 receptor agonists and uses thereof. US Patent 2010/190831 (A1) (2010).
- Shi, D. F. et al. GPR120 receptor agonists and uses thereof. WO Patent 2011/159297 (A1) (2011).
- Shi, D. F. et al. GPR120 receptor agonists and uses thereof. US Patent 2011/313003 (A1) (2011).
- Epple, R. et al. Thiazole derivatives as modulators of G protein-coupled receptors. WO Patent 2008103500 (A1) (2008).
- Hashimoto, N. et al. Novel phenyl-isoxazol-3-ol derivative. US Patent 2010/130559 (2010).
- Ishikawa, M. et al. Novel isoxazole derivative. EP Patent 2298750(A1) (2011).
- Wang, J., Wu, X., Simonavicius, N., Tian, H. & Ling, L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem. 281, 34457–34464 (2006).
CAS PubMed Google Scholar
- Bouchard, C., Page, J., Bedard, A., Tremblay, P. & Vallieres, L. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55, 790–800 (2007).
PubMed Google Scholar
- Venkataraman, C. & Kuo, F. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol. Lett. 101, 144–153 (2005).
CAS PubMed Google Scholar
- Nagasaki, H. et al. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes. FEBS Lett. 586, 368–372 (2012).
CAS PubMed Google Scholar
- Hakak, Y. Unett, D.J., Gatlin, J., Liaw, C.W. & Inc, A.P. Human G protein-coupled receptor and modulators thereof for the treatment of atherosclerosis and atherosclerotic disease and for the treatment of conditions related to MCP-1 expression. WO Patent 2007/027661 (A2) (2007).
- Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).
CAS PubMed Google Scholar
- Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).
CAS PubMed Google Scholar
- Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
CAS PubMed Google Scholar
- Nilsson, N. E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003).
CAS PubMed Google Scholar
- Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).
CAS PubMed Google Scholar
- Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).
CAS PubMed Google Scholar
- Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381–2386 (2010).
CAS PubMed Google Scholar
- Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).
CAS PubMed Google Scholar
- Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).
CAS PubMed Google Scholar
- Karaki, S. et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353–360 (2006).
CAS PubMed Google Scholar
- Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).
CAS PubMed Google Scholar
- Tazoe, H. et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 59 (Suppl. 2), 251–262 (2008).
PubMed Google Scholar
- Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).
CAS PubMed Google Scholar
- Karaki, S. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).
CAS PubMed Google Scholar
- Kaji, I., Karaki, S., Tanaka, R. & Kuwahara, A. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J. Mol. Histol. 42, 27–38 (2011).
CAS PubMed Google Scholar
- Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).
CAS PubMed PubMed Central Google Scholar
- Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).
CAS PubMed PubMed Central Google Scholar
- Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). This is the first report showing that FFA2 activation by short-chain fatty acids links diet and gastrointestinal bacterial metabolism with immune and inflammatory responses.
CAS PubMed PubMed Central Google Scholar
- Senga, T. et al. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 101, 1185–1187 (2003).
CAS PubMed Google Scholar
- Vinolo, M. A. et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 6, e21205 (2011).
CAS PubMed PubMed Central Google Scholar
- Sina, C. et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).
CAS PubMed Google Scholar
- Ge, H. et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).
CAS PubMed Google Scholar
- Wang, Y. et al. The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493–498 (2010).
PubMed Google Scholar
- Lee, T. et al. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599–1609 (2008).
CAS PubMed Google Scholar
- Schmidt, J. et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J. Biol. Chem. 286, 10628–10640 (2011).
CAS PubMed PubMed Central Google Scholar
- Hoveyda, H., Zoute, L. & Lenoir, F. Novel compounds, method for use them and pharmaceutical composition containing them. WO Patent 2011/151436(A2) (2011).
- Brantis, C. E., Ooms, F. & Bernard, J. Novel amino acid derivatives and their use as GPR43 receptor modulators. WO Patent 2011/092284(A1) (2011).
- Cai, T. Q. et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377, 987–991 (2008).
CAS PubMed Google Scholar
- Liu, C. et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009).
CAS PubMed Google Scholar
- Taggart, A. K. et al. (d)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280, 26649–26652 (2005).
CAS PubMed Google Scholar
- Ahmed, K. et al. Deorphanization of GPR109B as a receptor for the beta-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J. Biol. Chem. 284, 21928–21933 (2009).
CAS PubMed PubMed Central Google Scholar
- Offermanns, S. et al. International Union of Basic and Clinical Pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol. Rev. 63, 269–290 (2011).
CAS PubMed Google Scholar
- Ahmed, K. et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell. Metab. 11, 311–319 (2010). This is the first report on the physiological role of GPR81 as a receptor for lactate in insulin-induced anti-lipolysis.
CAS PubMed Google Scholar
- Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Med. 9, 352–355 (2003).
CAS PubMed Google Scholar
- Kostylina, G., Simon, D., Fey, M. F., Yousefi, S. & Simon, H. U. Neutrophil apoptosis mediated by nicotinic acid receptors (GPR109A). Cell Death Differ. 15, 134–142 (2008).
CAS PubMed Google Scholar
- Tang, Y. et al. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A. Biochem. Biophys. Res. Commun. 345, 29–37 (2006).
CAS PubMed Google Scholar
- Ge, H. et al. Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J. Lipid Res. 49, 797–803 (2008).
CAS PubMed Google Scholar
- Irukayama-Tomobe, Y. et al. Aromatic d-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B. Proc. Natl Acad. Sci. USA 106, 3930–3934 (2009).
CAS PubMed Google Scholar
- Soga, T. et al. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 303, 364–369 (2003).
CAS PubMed Google Scholar
- Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).
CAS PubMed Google Scholar
- Richman, J. G. et al. Nicotinic acid receptor agonists differentially activate downstream effectors. J. Biol. Chem. 282, 18028–18036 (2007).
CAS PubMed Google Scholar
- Benyó, Z., Gille, A., Bennett, C. L., Clausen, B. E. & Offermanns, S. Nicotinic acid-induced flushing is mediated by activation of epidermal Langerhans cells. Mol. Pharmacol. 70, 1844–1849 (2006).
PubMed Google Scholar
- Exton, J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol. 36, 481–509 (1996).
CAS PubMed Google Scholar
- Jeninga, E. H. et al. Peroxisome proliferator-activated receptor γ regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J. Biol. Chem. 284, 26385–26393 (2009).
CAS PubMed PubMed Central Google Scholar
- Feingold, K. R., Moser, A., Shigenaga, J. K. & Grunfeld, C. Inflammation inhibits GPR81 expression in adipose tissue. Inflamm. Res. 60, 991–995 (2011).
CAS PubMed Google Scholar
- Jansson, P. A., Larsson, A., Smith, U. & Lonnroth, P. Lactate release from the subcutaneous tissue in lean and obese men. J. Clin. Invest. 93, 240–246 (1994).
CAS PubMed PubMed Central Google Scholar
- Qvisth, V., Hagstrom-Toft, E., Moberg, E., Sjoberg, S. & Bolinder, J. Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am. J. Physiol. Endocrinol. Metab. 292, E709–E714 (2007).
CAS PubMed Google Scholar
- DiGirolamo, M., Newby, F. D. & Lovejoy, J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 6, 2405–2412 (1992).
CAS PubMed Google Scholar
- Liu, C. et al. 3,5-dihydroxybenzoic acid, a specific agonist for HCA1, inhibits lipolysis in adipocytes. J. Pharmacol. Exp. Ther. 341, 794–801 (2012).
CAS PubMed Google Scholar
- Marklund, M., Landberg, R., Anderson, A., Aman, P. & Kamal-Eldin, A. Alkylresorcinol metabolites in urine correlate with the intake of whole grains and cereal fibre in free-living Swedish adults. Br. J. Nutr. 3, 1–8 (2012).
Google Scholar
- Liu, C., Lovenberg, T. W. & Wu, J. GPR81-ligand complexes and their preparation and use. WO Patent 2008/063321 (A2) (2008).
- Boatman, P. D. et al. 3H-imidazo[4,5-b]pyridin-5-ol derivatives useful in the treatment of GPR81 receptor disorders. WO Patent 2010/030360(A1) (2010).
- Benyo, Z. et al. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Clin. Invest. 115, 3634–3640 (2005).
CAS PubMed PubMed Central Google Scholar
- Maciejewski-Lenoir, D. et al. Langerhans cells release prostaglandin D2 in response to nicotinic acid. J. Invest. Dermatol. 126, 2637–2646 (2006).
CAS PubMed Google Scholar
- Schaub, A., Futterer, A. & Pfeffer, K. PUMA-G, an IFN-γ-inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily. Eur. J. Immunol. 31, 3714–3725 (2001).
- Hanson, J. et al. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Invest. 120, 2910–2919 (2010).
CAS PubMed PubMed Central Google Scholar
- Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).
CAS PubMed PubMed Central Google Scholar
- Cresci, G. A., Thangaraju, M., Mellinger, J. D., Liu, K. & Ganapathy, V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J. Gastrointest. Surg. 14, 449–461 (2010).
PubMed Google Scholar
- Martin, P. M. et al. Expression and localization of GPR109A (PUMA-G/HM74A) mRNA and protein in mammalian retinal pigment epithelium. Mol. Vis. 15, 362–372 (2009).
CAS PubMed PubMed Central Google Scholar
- Gambhir, D. et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 53, 2208–2217 (2012).
PubMed PubMed Central Google Scholar
- Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48, 574–583 (1969).
CAS PubMed PubMed Central Google Scholar
- Senior, B. & Loridan, L. Direct regulatory effect of ketones on lipolysis and on glucose concentrations in man. Nature 219, 83–84 (1968).
CAS PubMed Google Scholar
- Gille, A., Bodor, E. T., Ahmed, K. & Offermanns, S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48, 79–106 (2008).
CAS PubMed Google Scholar
- Brown, G. et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323, 1289–1298 (1990).
CAS PubMed Google Scholar
- Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).
CAS PubMed Google Scholar
- Taylor, A. J. et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).
CAS PubMed Google Scholar
- Canner, P. L. et al. Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).
CAS PubMed Google Scholar
- Carlson, L. A. & Rosenhamer, G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223, 405–418 (1988).
CAS PubMed Google Scholar
- The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 231, 360–381 (1975).
- Blankenhorn, D. H. et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257, 3233–3240 (1987).
CAS PubMed Google Scholar
- Digby, J. E. et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler. Thromb. Vasc. Biol. 32, 669–676 (2012).
CAS Google Scholar
- Blankenhorn, D. H. et al. Effects of colestipol-niacin therapy on human femoral atherosclerosis. Circulation 83, 438–447 (1991).
CAS PubMed Google Scholar
- Lee, J. M. et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 54, 1787–1794 (2009).
CAS PubMed Google Scholar
- Whitney, E. J. et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 142, 95–104 (2005).
PubMed Google Scholar
- Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).
PubMed Google Scholar
- Nicholls, S. J. Is niacin ineffective? Or did AIM-HIGH miss its target? Cleve. Clin. J. Med. 79, 38–43 (2012).
PubMed Google Scholar
- Bloomgarden, Z. & Handelsman, Y. Did AIM-HIGH aim too low? J. Diabetes 3, 1–2 (2011).
PubMed Google Scholar
- Carlson, L. A. Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med. Scand. 173, 719–722 (1963).
CAS PubMed Google Scholar
- Joy, T. & Hegele, R. A. Is raising HDL a futile strategy for atheroprotection? Nature Rev. Drug. Discov. 7, 143–155 (2008).
CAS Google Scholar
- Hernandez, M., Wright, S. D. & Cai, T. Q. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem. Biophys. Res. Commun. 355, 1075–1080 (2007).
CAS PubMed Google Scholar
- van der Hoorn, J. W. et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler. Thromb. Vasc. Biol. 28, 2016–2022 (2008).
CAS PubMed Google Scholar
- Kontush, A. & Chapman, M. J. Antiatherogenic small, dense HDL — guardian angel of the arterial wall? Nature Clin. Pract. Cardiovasc. Med. 3, 144–153 (2006).
CAS Google Scholar
- Offermanns, S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci. 27, 384–390 (2006).
CAS PubMed Google Scholar
- Bodor, E. T. & Offermanns, S. Nicotinic acid: an old drug with a promising future. Br. J. Pharmacol. 153 (Suppl. 1), S68–S75 (2008).
CAS PubMed Google Scholar
- Li, X., Millar, J. S., Brownell, N., Briand, F. & Rader, D. J. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80, 1450–1457 (2010).
CAS PubMed PubMed Central Google Scholar
- Kamanna, V. S. & Kashyap, M. L. Mechanism of action of niacin. Am. J. Cardiol. 101, 20B–26B (2008).
CAS PubMed Google Scholar
- Lai, E. et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J. Clin. Lipidol. 2, 375–383 (2008).
PubMed Google Scholar
- Boatman, P. D. et al. (1_a_R,5_a_R)1a, 3,5,5_a_-tetrahydro-1_H_-2,3-diaza-cyclopropa[a]pentalene-4-carboxylic acid: a potent GPR109a agonist that lowers free fatty acids in humans. J. Med. Chem. 55, 3644–3666 (2012). This is the first report on a Phase II clinical study of a full HCA 2 (GPR109A) agonist showing anti-lipolytic effects but no increase in HDL cholesterol plasma levels.
CAS PubMed Google Scholar
- Lukasova, M., Hanson, J., Tunaru, S. & Offermanns, S. Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol. Sci. 32, 700–707 (2011).
CAS PubMed Google Scholar
- Lukasova, M., Malaval, C., Gille, A., Kero, J. & Offermanns, S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J. Clin. Invest. 121, 1163–1173 (2011).
CAS PubMed PubMed Central Google Scholar
- Wu, B. J. et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler. Thromb. Vasc. Biol. 30, 968–975 (2010). References 184 and 185 are the first studies to show the lipid-independent beneficial cardiovascular effects of nicotinic acid. Some of these effects appear to be mediated by HCA 2.
CAS PubMed Google Scholar
- Plaisance, E. P. et al. Niacin stimulates adiponectin secretion through the GPR109A receptor. Am. J. Physiol. Endocrinol. Metab. 296, E549–E558 (2009).
CAS PubMed Google Scholar
- Westphal, S., Borucki, K., Taneva, E., Makarova, R. & Luley, C. Extended-release niacin raises adiponectin and leptin. Atherosclerosis 193, 361–365 (2007).
CAS PubMed Google Scholar
- Ingersoll, M. A. et al. Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis. Immunobiology 217, 548–557 (2011).
PubMed PubMed Central Google Scholar
- Holzhauser, E. et al. Nicotinic acid has anti-atherogenic and anti-inflammatory properties on advanced atherosclerotic lesions independent of its lipid-modifying capabilities. J. Cardiovasc. Pharmacol. 57, 447–454 (2011).
PubMed Google Scholar
- Kamanna, V. S., Ganji, S. H. & Kashyap, M. L. The mechanism and mitigation of niacin-induced flushing. Int. J. Clin. Pract. 63, 1369–1377 (2009).
CAS PubMed PubMed Central Google Scholar
- Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA 103, 6682–6687 (2006).
CAS PubMed Google Scholar
- Paolini, J. F. et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol. 101, 625–630 (2008).
CAS PubMed Google Scholar
- Walters, R. W. et al. β-arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. 119, 1312–1321 (2009).
CAS PubMed PubMed Central Google Scholar
- Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Rev. Drug Discov. 9, 373–386 (2010).
CAS Google Scholar
- Tang, H., Lu, J. Y., Zheng, X., Yang, Y. & Reagan, J. D. The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist. Biochem. Biophys. Res. Commun. 375, 562–565 (2008). This is the first report on fumaric acid esters as ligands of HCA 2.
CAS PubMed Google Scholar
- Papadopoulou, A., D'Souza, M., Kappos, L. & Yaldizli, O. Dimethyl fumarate for multiple sclerosis. Expert. Opin. Investig. Drugs 19, 1603–1612 (2010).
CAS PubMed Google Scholar
- [No authors listed]. Trial watch: Phase III success for Biogen's oral multiple sclerosis therapy. Nature Rev. Drug Discov. 10, 404 (2011).
- Zhang, J. et al. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiol. Dis. 32, 273–280 (2008).
CAS PubMed PubMed Central Google Scholar
- Schilling, S., Goelz, S., Linker, R., Luehder, F. & Gold, R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin. Exp. Immunol. 145, 101–107 (2006).
CAS PubMed PubMed Central Google Scholar
- Fuccella, L. M. et al. Inhibition of lipolysis by nicotinic acid and by acipimox. Clin. Pharmacol. Ther. 28, 790–795 (1980).
CAS PubMed Google Scholar
- Cayen, M. N., Kallai-Sanfacon, M. A., Dubuc, J., Greselin, E. & Dvornik, D. Evaluation of the lipid-lowering activity of AY-25712 in rats. Atherosclerosis 45, 267–279 (1982).
CAS PubMed Google Scholar
- Soudijn, W., van Wijngaarden, I. & IJzerman, A. P. Nicotinic acid receptor subtypes and their ligands. Med. Res. Rev. 27, 417–433 (2007).
CAS PubMed Google Scholar
- Semple, G., Boatman, P. D. & Richman, J. G. Recent progress in the discovery of niacin receptor agonists. Curr. Opin. Drug Discov. Devel. 10, 452–459 (2007).
CAS PubMed Google Scholar
- van Herk, T. et al. Pyrazole derivatives as partial agonists for the nicotinic acid receptor. J. Med. Chem. 46, 3945–3951 (2003).
CAS PubMed Google Scholar
- Gharbaoui, T. et al. Agonist lead identification for the high affinity niacin receptor GPR109a. Bioorg. Med. Chem. Lett. 17, 4914–4919 (2007).
CAS PubMed Google Scholar
- Skinner, P. J. et al. Fluorinated pyrazole acids are agonists of the high affinity niacin receptor GPR109a. Bioorg. Med. Chem. Lett. 17, 5620–5623 (2007).
CAS PubMed Google Scholar
- Semple, G. et al. 3-(1_H_-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J. Med. Chem. 51, 5101–5108 (2008).
CAS PubMed Google Scholar
- Boatman, P. D. et al. Potent tricyclic pyrazole tetrazole agonists of the nicotinic acid receptor (GPR109a). Bioorg. Med. Chem. Lett. 20, 2797–2800 (2010).
CAS PubMed Google Scholar
- Imbriglio, J. E. et al. GPR109a agonists. Part 1: 5-alkyl and 5-aryl-pyrazole-tetrazoles as agonists of the human orphan G-protein coupled receptor GPR109a. Bioorg. Med. Chem. Lett. 19, 2121–2124 (2009).
CAS PubMed Google Scholar
- Schmidt, D. et al. Pyrazole acids as niacin receptor agonists for the treatment of dyslipidemia. Bioorg. Med. Chem. Lett. 19, 4768–4772 (2009).
CAS PubMed Google Scholar
- Imbriglio, J. E. et al. GPR109a agonists. Part 2: pyrazole-acids as agonists of the human orphan G-protein coupled receptor GPR109a. Bioorg. Med. Chem. Lett. 20, 4472–4474 (2010).
CAS PubMed Google Scholar
- Ren, N. et al. Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G). J. Lipid Res. 50, 908–914 (2009).
CAS PubMed PubMed Central Google Scholar
- van Veldhoven, J. P. et al. Structure–activity relationships of _trans_-substituted-propenoic acid derivatives on the nicotinic acid receptor HCA2 (GPR109A). Bioorg. Med. Chem. Lett. 21, 2736–2739 (2011).
CAS PubMed Google Scholar
- Shen, H. C. et al. Discovery of biaryl anthranilides as full agonists for the high affinity niacin receptor. J. Med. Chem. 50, 6303–6306 (2007).
CAS PubMed Google Scholar
- Shen, H. C. et al. Discovery of orally bioavailable and novel urea agonists of the high affinity niacin receptor GPR109A. Bioorg. Med. Chem. Lett. 17, 6723–6728 (2007).
CAS PubMed Google Scholar
- Schmidt, D. et al. Anthranilic acid replacements in a niacin receptor agonist. Bioorg. Med. Chem. Lett. 20, 3426–3430 (2010).
CAS PubMed Google Scholar
- Raghavan, S. et al. Tetrahydro anthranilic acid as a surrogate for anthranilic acid: application to the discovery of potent niacin receptor agonists. Bioorg. Med. Chem. Lett. 18, 3163–3167 (2008).
CAS PubMed Google Scholar
- Ding, F. X. et al. Discovery of pyrazolyl propionyl cyclohexenamide derivatives as full agonists for the high affinity niacin receptor GPR109A. Bioorg. Med. Chem. Lett. 20, 3372–3375 (2010).
CAS PubMed Google Scholar
- Shen, H. C. et al. Discovery of a biaryl cyclohexene carboxylic acid (MK-6892): a potent and selective high affinity niacin receptor full agonist with reduced flushing profiles in animals as a preclinical candidate. J. Med. Chem. 53, 2666–2670 (2010).
CAS PubMed Google Scholar
- Peters, J. U. et al. Pyrido pyrimidinones as selective agonists of the high affinity niacin receptor GPR109A: optimization of in vitro activity. Bioorg. Med. Chem. Lett. 20, 5426–5430 (2010).
CAS PubMed Google Scholar
- Shen, H. C. et al. Discovery of pyrazolopyrimidines as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. Bioorg. Med. Chem. Lett. 18, 4948–4951 (2008).
CAS PubMed Google Scholar
- Blad, C. C. et al. Novel 3,6,7-substituted pyrazolopyrimidines as positive allosteric modulators for the hydroxycarboxylic acid receptor 2 (GPR109A). J. Med. Chem. 55, 3563–3567 (2012).
CAS PubMed Google Scholar
- Boatman, P. D., Richman, J. G. & Semple, G. Nicotinic acid receptor agonists. J. Med. Chem. 51, 7653–7662 (2008).
CAS PubMed Google Scholar
- Martres, P. HM74a agonists: will they be the new generation of nicotinic acid? Curr. Top. Med. Chem. 9, 428–435 (2009).
CAS PubMed Google Scholar
- Shen, H. C. Acyl hydroxypyrazoles as novel agonists for high-affinity nicotinic acid receptor GPR109A: WO2008051403. Expert Opin. Ther. Pat. 19, 1149–1155 (2009).
CAS PubMed Google Scholar
- Shen, H. C. & Colletti, S. L. Novel patent publications on high-affinity nicotinic acid receptor agonists. Expert Opin. Ther. Pat. 19, 957–967 (2009).
CAS PubMed Google Scholar
- Nomura, H., Nielsen, B. W. & Matsushima, K. Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int. Immunol. 5, 1239–1249 (1993).
CAS PubMed Google Scholar
- Yousefi, S. Cooper, P. R., Mueck, B., Potter, S. L. & Jarai, G. cDNA representational difference analysis of human neutrophils stimulated by GM-CSF. Biochem. Biophys. Res. Commun. 277, 401–409 (2000).
CAS PubMed Google Scholar
- Costa, C. G. et al. Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders. Clin. Chem. 44, 463–471 (1998).
CAS PubMed Google Scholar
- Jones, P. M., Tjoa, S., Fennessey, P. V., Goodman, S. I. & Bennett, M. J. Addition of quantitative 3-hydroxy-octadecanoic acid to the stable isotope gas chromatography-mass spectrometry method for measuring 3-hydroxy fatty acids. Clin. Chem. 48, 176–179 (2002).
CAS PubMed Google Scholar
- Ahmed, K., Tunaru, S. & Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 30, 557–562 (2009).
CAS PubMed Google Scholar
- Mandrika, I., Petrovska, R. & Klovins, J. Evidence for constitutive dimerization of niacin receptor subtypes. Biochem. Biophys. Res. Commun. 395, 281–287 (2010).
CAS PubMed Google Scholar
- Mahboubi, K. et al. Triglyceride modulation by acifran analogs: activity towards the niacin high and low affinity G protein-coupled receptors HM74A and HM74. Biochem. Biophys. Res. Commun. 340, 482–490 (2006).
CAS PubMed Google Scholar
- Jung, J. K. et al. Analogues of acifran: agonists of the high and low affinity niacin receptors, GPR109a and GPR109b. J. Med. Chem. 50, 1445–1448 (2007).
CAS PubMed Google Scholar
- Semple, G. et al. 1-alkyl-benzotriazole-5-carboxylic acids are highly selective agonists of the human orphan G-protein-coupled receptor GPR109b. J. Med. Chem. 49, 1227–1230 (2006).
CAS PubMed Google Scholar
- Skinner, P. J. et al. 3-nitro-4-amino benzoic acids and 6-amino nicotinic acids are highly selective agonists of GPR109b. Bioorg. Med. Chem. Lett. 17, 6619–6622 (2007).
CAS PubMed Google Scholar
- Skinner, P. J. et al. 5-N,_N_-disubstituted 5-aminopyrazole-3-carboxylic acids are highly potent agonists of GPR109b. Bioorg. Med. Chem. Lett. 19, 4207–4209 (2009).
CAS PubMed Google Scholar
- Ariza, A. C., Deen, P. M. T. & Robben, J. H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. 3, 22 (2012). This is an excellent review on the physiological and pathological functions of SUCNR1 and its potential as a pharmacological target.
Google Scholar
- He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).
CAS PubMed Google Scholar
- Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).
CAS PubMed PubMed Central Google Scholar
- Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature Med. 14, 1067–1076 (2008).
CAS PubMed Google Scholar
- Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nature Immunol. 9, 1261–1269 (2008).
CAS Google Scholar
- Vargas, S. L., Toma, I., Kang, J. J., Meer, E. J. & Peti-Peterdi, J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J. Am. Soc. Nephrol. 20, 1002–1011 (2009).
CAS PubMed PubMed Central Google Scholar
- Amisten, S., Braun, O. O., Bengtsson, A. & Erlinge, D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb. Res. 122, 47–57 (2008).
CAS PubMed Google Scholar
- Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).
CAS PubMed PubMed Central Google Scholar
- Peti-Peterdi, J. High glucose and renin release: the role of succinate and GPR91. Kidney Int. 78, 1214–1217 (2010).
CAS PubMed Google Scholar
- Robben, J. H. et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76, 1258–1267 (2009).
CAS PubMed Google Scholar
- Bhuniya, D. et al. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg. Med. Chem. Lett. 21, 3596–3602 (2011).
CAS PubMed Google Scholar
- Wittenberger, T. et al. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics 3, 17 (2002).
PubMed PubMed Central Google Scholar
- Qi, A. D., Harden, T. K. & Nicholas, R. A. GPR80/99, proposed to be the P2Y(15) receptor activated by adenosine and AMP, is not a P2Y receptor. Purinerg. Signal. 1, 67–74 (2004).
CAS Google Scholar
- Wagner, B. M., Donnarumma, F., Wintersteiger, R., Windischhofer, W. & Leis, H. J. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 396, 2629–2637 (2010).
CAS PubMed Google Scholar
- Ahmadian, M., Wang, Y. & Sul, H. S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol. 42, 555–559 (2010).
CAS PubMed Google Scholar
- Zechner, R. et al. FAT SIGNALS — lipases and lipolysis in lipid metabolism and signaling. Cell. Metab. 15, 279–291 (2012).
CAS PubMed PubMed Central Google Scholar
- Tunaru, S., Lattig, J., Kero, J., Krause, G. & Offermanns, S. Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol. Pharmacol. 68, 1271–1280 (2005).
CAS PubMed Google Scholar