Integration of virtual and high-throughput screening (original) (raw)
Handen, J. S. High-throughput screening — challenges for the future. Drug Discov. World 47–50 (Summer 2002).
Fox, S., Farr-Jones, S. & Yund, M. A. High-throughput screening for drug discovery: continually transitioning into new technologies. J. Biomol. Screen.4, 183–186 (1999). ArticleCASPubMed Google Scholar
Smith, A. Screening for drug discovery: the leading question. Nature418, 453–459 (2002). PubMed Google Scholar
Fox, S., Farr-Jones, S., Sopchak, L. & Wang, H. Fine-tuning the technology strategies for lead finding. Drug Discov. World 24–30 (Summer 2002).
Bajorath, J. Rational drug discovery revisited: interfacing experimental programs with bio- and chemo-informatics. Drug Discov. Today6, 989–995 (2001). CASPubMed Google Scholar
Drews, J. Drug discovery: a historical perspective. Science287, 1960–1964 (2000). CASPubMed Google Scholar
Bajorath, J. Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J. Chem. Inf. Comput. Sci.41, 233–245 (2001). CASPubMed Google Scholar
Bajorath, J. Virtual screening: methods, expectations, and reality. Curr. Drug Discov.2, 24–28 (2002). Google Scholar
Brown, F. K. Chemoinformatics: what is it and how does it impact drug discovery. Annu. Rep. Med. Chem.33, 375–384 (1998). CAS Google Scholar
Agrafiotis, D. K., Lobanov, V. S. & Salemme, R. F. Combinatorial informatics in the post-genomics era. Nature Rev. Drug Discov.1, 337–346 (2002). An excellent review of diversity analysis, library design and profiling methods. CAS Google Scholar
Kuntz, I. D. Structure-based strategies for drug design and discovery. Science257, 1078–1082 (1992). CASPubMed Google Scholar
Halpering, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins47, 409–443 (2002). Google Scholar
Willett, P., Barnard, J. M. & Downs, G. M. Chemical similarity searching. J. Chem. Inf. Comput. Sci.38, 983–996 (1998). This manuscript provides an introduction to similarity searching and a good description of different similarity metrics. CAS Google Scholar
Livingstone, D. J. The characterization of chemical structures using molecular properties. A survey. J. Chem. Inf. Comput. Sci.40, 195–209 (2000). An extensive review of different types of molecular property descriptor. CASPubMed Google Scholar
Cramer, R. D., Redl, G. & Berkoff, C. E. Substructural analysis. A novel approach to the problem of drug design. J. Med. Chem.17, 533–535 (1974). CASPubMed Google Scholar
Barnard, J. M. Substructure searching methods. Old and new. J. Chem. Inf. Comput. Sci.33, 532–538 (1993). CAS Google Scholar
Gund, P. in Progress in Molecular and Subcellular Biology Vol. 5 (ed. Hahn, F. E.) 117–142 (Springer–Verlag, Berlin, 1977). Google Scholar
Sheridan, R. P., Rusinko, A., Nilakantan, R. & Venkataraghavan, R. Searching for pharmacophores in large coordinate databases and its use in drug design. Proc. Natl Acad. Sci. USA86, 8156–8159 (1989). Google Scholar
Martin, Y. C. 3D database searching in drug design. J. Med. Chem.35, 2145–2154 (1992). CASPubMed Google Scholar
Pearlman, R. S. Rapid generation of high quality approximate 3D molecular structures. Chem. Des. Auto. News2, 1–7 (1987). Google Scholar
Gasteiger, J., Rudolph, C. & Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comp. Method.3, 537–547 (1990). CAS Google Scholar
Cramer, R. D. et al. Prospective identification of biologically active structures by topomer similarity searching. J. Med. Chem.42, 3919–3933 (1999). PubMed Google Scholar
Andrews, K. M. & Cramer, R. D. Toward general methods for targeted library design: topomer shape similarity with diverse structures as queries. J. Med. Chem.43, 1723–1740 (2000). CASPubMed Google Scholar
Hall, L. H. & Kier, L. B. The E-state as the basis for molecular structure space definition and structure similarity. J. Chem. Inf. Comput. Sci.40, 784–791 (2000). CASPubMed Google Scholar
Kier, L. B. & Hall, L. H. Database organization and searching with E-state indices. SAR QSAR Environ. Res.12, 55–74 (2001). CASPubMed Google Scholar
Hull, R. D. et al. Latent semantic structure indexing (LaSSI) for defining chemical similarity. J. Med. Chem.44, 1177–1184 (2001). CASPubMed Google Scholar
Raymond, J. W. & Willett, P. Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J. Comput. Aided Mol. Des.16, 59–71 (2002). CASPubMed Google Scholar
Cramer, R. D., Patterson, D. E. & Bunce, J. D. Comparative molecular field analysis (CoMFA). Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110, 5959–5967 (1988). CASPubMed Google Scholar
Hopfinger, A. J. et al. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc.119, 10509–10524 (1997). CAS Google Scholar
Duca, J. S. & Hopfinger, A. J. Estimation of molecular similarity based on 4D-QSAR analysis: formalism and validation. J. Chem. Inf. Comput. Sci.41, 1367–1387 (2001). CASPubMed Google Scholar
Hopfinger, A. J., Reaka, A., Venkatarangan, P., Duca, J. S. & Wang, S. Construction of a virtual high throughput screen by 4D-QSAR analysis: application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b. J. Chem. Inf. Comput. Sci.39, 1151–1160 (1999). An instructive example of the adoption of a multidimensional QSAR model for VS calculations. CAS Google Scholar
Xue, L., Godden, J. W. & Bajorath, J. Evaluation of descriptors and mini-fingerprints for the identification of molecules with similar activity. J. Chem. Inf. Comput. Sci.40, 1227–1234 (2000). CASPubMed Google Scholar
Xue, L., Stahura, F. L., Godden, J. W. & Bajorath, J. Mini-fingerprints detect similar activity of receptor ligands previously recognized only by three-dimensional pharmacophore-based methods. J. Chem. Inf. Comput. Sci.41, 394–401 (2001). This paper shows that conceptually simple but carefully designed 2D fingerprints can recognize molecules that have diverse structures but similar activity. CASPubMed Google Scholar
Mason, J. S. et al. New 4-point pharmacophore method for molecular similarity and diversity applications: overview over the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J. Med. Chem.42, 3251–3264 (1999). An extensive introduction to the four-point pharmacophore methodology. CASPubMed Google Scholar
Mason, J. S. & Cheney, D. L. Library design and virtual screening using multiple point pharmacophore fingerprints. Pac. Symp. Biocomput.5, 576–587 (2000). Google Scholar
McGregor, M. J. & Muskal, S. M. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci.39, 569–574 (1999). CASPubMed Google Scholar
Bradley, E. K. et al. A rapid computational method for lead evolution: description and application to α1-adrenergic antagonists. J. Med. Chem.43, 2770–2774 (2000). CASPubMed Google Scholar
Brown, R. D. & Martin, Y. C. Use of structure–activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci.36, 572–584 (1996). CAS Google Scholar
Brown, R. D. & Martin, Y. C. The information content of 2D and 3D molecular descriptors relevant to ligand–receptor binding. J. Chem. Inf. Comput. Sci.37, 731–740 (1997). Google Scholar
Matter, H. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional descriptors. J. Med. Chem.40, 1219–1229 (1997). CASPubMed Google Scholar
Willett, P., Wintermann, V. & Bawden, D. Implementation of non-hierarchic cluster analysis methods in chemical information systems: selection of compounds for biological testing and clustering of substructure search output. J. Chem. Inf. Comput. Sci.26, 109–118 (1986). CAS Google Scholar
Barnard, J. M. & Downs, G. M. Clustering of chemical structures on the basis of two-dimensional similarity measures. J. Chem. Inf. Comput. Sci.32, 644–649 (1992). CAS Google Scholar
Pearlman, R. S. & Smith, K. M. Novel software tools for chemical diversity. Perspect. Drug Discov. Design9, 339–353 (1998). Google Scholar
Pearlman, R. S. & Smith, K. M. Metric validation and the receptor-relevant subspace concept. J. Chem. Inf. Comput. Sci.39, 28–35 (1999). A landmark paper rationalizing the design of low-dimensional reference spaces for cell-based partitioning. CAS Google Scholar
Bayley, M. J. & Willett, P. Binning schemes for partition-based compound selection. J. Mol. Graph. Model.17, 10–18 (1999). CASPubMed Google Scholar
Agrafiotis, D. K. & Rassokhin, D. N. A fractal approach for selecting an appropriate bin size for cell-based diversity estimation. J. Chem. Inf. Comput. Sci.42, 117–122 (2002). CASPubMed Google Scholar
Xue, L. & Bajorath, J. Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm. J. Chem. Inf. Comput. Sci.40, 801–809 (2000). CASPubMed Google Scholar
Xie, D., Tropsha, A. & Schlick, T. An efficient projection protocol for chemical databases: single value decomposition combined with truncated Newton minimization. J. Chem. Inf. Comput. Sci.40, 167–177 (2000). CASPubMed Google Scholar
Godden, J. W., Xue, L. & Bajorath, J. Classification of biologically active compounds by median partitioning. J. Chem. Inf. Comput. Sci.42, 1263–1269 (2002). CASPubMed Google Scholar
Sheridan, R. P. & Kearsley, S. K. Why do we need so many chemical similarity search methods? Drug Discov. Today7, 903–911 (2002). PubMed Google Scholar
Walters, W. P., Stahl, M. T. & Murcko, M. A. Virtual screening — an overview. Drug Discov. Today3, 160–178 (1998). CAS Google Scholar
Hann, M., Hudson, B., Lifely, R., Miller, L. & Ramsden, N. Strategic pooling of compounds for high-throughput screening. J. Chem. Inf. Comput. Sci.39, 897–902 (1999). CASPubMed Google Scholar
Lipinski, C. A. Avoiding investments in doomed drugs. Curr. Drug Discov.1, 17–19 (2001). Google Scholar
Sutter, J. M. & Jurs, P. C. Prediction of aqueous solubility for a diverse set of heteroatom-containing organic compounds using a quantitative structure–property relationship. J. Chem. Inf. Comput. Sci.36, 100–107 (1996). CAS Google Scholar
Huuskonen, J., Salo, M. & Taskinen, J. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci.38, 450–456 (1998). CASPubMed Google Scholar
Klopman, G. & Zhao, H. Estimation of aqueous solubility of organic molecules by the group contribution approach. J. Chem. Inf. Comput. Sci.41, 439–445 (2001). CASPubMed Google Scholar
Jorgensen, W. L. & Duffy, E. R. Prediction of drug solubility from structures. Adv. Drug. Deliv. Rev.54, 355–366 (2002). CASPubMed Google Scholar
Wessel, M. D., Jurs, P. C., Tolan, J. W. & Muskal, S. M. Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci.38, 726–735 (1998). CASPubMed Google Scholar
Egan, W. J., Merz, K. M. Jr & Baldwin, J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem.43, 3867–3877 (2000). CASPubMed Google Scholar
Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem.43, 3714–3717 (2000). CASPubMed Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.23, 3–25 (1997). CAS Google Scholar
Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem.39, 2887–2893 (1996). CASPubMed Google Scholar
Sheridan, R. P. The most common chemical replacements in drug-like compounds. J. Chem. Inf. Comput. Sci.42, 103–108 (2002). CASPubMed Google Scholar
Oprea, T. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des.14, 251–264 (2000). CASPubMed Google Scholar
Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem.1, 55–67 (1999). CASPubMed Google Scholar
Muegge, I., Heald, S. L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem.44, 1841–1846 (2001). CASPubMed Google Scholar
Gillet, V. J., Willett, P. & Bradshaw, J. Identification of biological activity profiles using substructural analysis and genetic algorithms. J. Chem. Inf. Comput. Sci.38, 165–179 (1998). A good example of the usefulness of genetic algorithms in descriptor analysis. Here, a genetic algorithm implementation was used to assign weighting factors to molecular descriptors for the prediction of drug-like molecules. CASPubMed Google Scholar
Ajay, A., Walters, W. P. & Murcko, M. A. Can we learn to distinguish between 'drug-like' and 'nondrug-like' molecules? J. Med. Chem.41, 3314–3324 (1998). CASPubMed Google Scholar
Sadowski, J. & Kubinyi, H. A scoring scheme to distinguish between drugs and non-drugs. J. Med. Chem.41, 3325–3329 (1998). References 68 and 69 were the first to apply machine-learning techniques to the systematic prediction of drug-likeness. Different from QSAR-type analysis, neural network models can capture non-linear property relationships. CASPubMed Google Scholar
Norinder, U., Sjöberg, P. & Österberg, T. Theoretical calculation and prediction of blood–brain-barrier partitioning of organic solutes using MolSurf parameterization and PLS statistics. J. Pharm. Sci.87, 952–959 (1998). CASPubMed Google Scholar
van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R. & Raevsky, O. A. Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target.6, 151–165 (1998). CASPubMed Google Scholar
Kelder, J., Grootenhuis, P. D., Bayada, D. M., Delbressine, L. P. & Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res.16, 1514–1519 (1999). CASPubMed Google Scholar
Ajay, A., Bemis, G. W. & Murcko, M. A. Designing libraries with CNS activity. J. Med. Chem.42, 4942–4951 (1999). CASPubMed Google Scholar
Caldwell, G. W., Ritchie, M. M., Masucci, J. A., Hagemann, W. & Yan, Z. The new pre-clinical paradigm: compound optimization in early and late phase drug discovery. Curr. Topics Med. Chem.1, 353–366 (2001). CAS Google Scholar
Yoshida, F. & Topliss, J. G. QSAR model for drug human oral bioavailability. J. Med. Chem.43, 2575–2585 (2000). CASPubMed Google Scholar
de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A. & Jones, B. C. A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed _N_-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J. Med. Chem.42, 1515–1524 (1999). CASPubMed Google Scholar
Ekins, S. et al. Three- and four-dimensional quantitative structure–activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos.28, 994–1002 (2000). CASPubMed Google Scholar
Jones, J. P., Mysinger, M. & Korzekwa, K. R. Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab. Dispos.30, 7–12 (2002). CASPubMed Google Scholar
Ahlberg, C. Visual exploration of HTS databases: bridging the gap between chemistry and biology. Drug Discov. Today4, 370–376 (1999). CASPubMed Google Scholar
Engels, M. F., Wouters, L., Verbeeck, R. & Vanhoof, G. Outlier mining in high throughput screening experiments. J. Biomol. Screen.7, 341–351 (2002). CASPubMed Google Scholar
Chen, X., Rusinko, A. & Young, S. S. Recursive partitioning analysis of a large structure–activity data set using three-dimensional descriptors. J. Chem. Inf. Comput. Sci.38, 1054–1062 (1998). CAS Google Scholar
Rusinko, A., Farmen, M. W., Lambert, C. G., Brown, P. L. & Young, S. S. Analysis of a large structure–biological activity data set using recursive partitioning. J. Chem. Inf. Comput. Sci.39, 1017–1026 (1999). References 81 and 82 establish the recursive partitioning approach for the analysis and mining of large screening data sets. CASPubMed Google Scholar
Cho, S. J., Shen, C. F. & Hermsmeier, M. A. Binary formal inference-based recursive modeling using multiple atom and physicochemical property class pair and torsion descriptors as decision criteria. J. Chem. Inf. Comput. Sci.40, 668–680 (2000). CASPubMed Google Scholar
van Rhee, A. M. et al. Retrospective analysis of an experimental high-throughput screening data set by recursive partitioning. J. Comb. Chem.3, 267–277 (2001). CASPubMed Google Scholar
Miller, D. A. Results of a new classification algorithm combining K nearest neighbors and recursive partitioning. J. Chem. Inf. Comput. Sci.41, 168–175 (2001). CASPubMed Google Scholar
Blower, P., Fligner, M., Verducci, J. & Bjoraker, J. On combining recursive partitioning and simulated annealing to detect groups of biologically active compounds. J. Chem. Inf. Comput. Sci.42, 393–404 (2002). CASPubMed Google Scholar
Nicolaou, C. A., Tamura, S. Y., Kelley, B. P., Bassett, S. I. & Nutt, R. F. Analysis of large screening data sets via adaptively grown phylogenetic-like trees. J. Chem. Inf. Comput. Sci.42, 1069–1079 (2002). The introduction of a new clustering method that shows promise in extracting diverse structure–activity relationships from screening data. CASPubMed Google Scholar
Tamura, S. Y., Bacha, P. A., Gruver, H. S. & Nutt, R. F. Data analysis of high-throughput screening results: application of multidomain clustering to the NCI anti-HIV. J. Med. Chem.45, 3082–3093 (2002). CASPubMed Google Scholar
Menard, P. R., Lewis, R. A. & Mason, J. S. Rational screening set design and compound selection: cascaded clustering. J. Chem. Inf. Comput. Sci.38, 497–505 (1998). CAS Google Scholar
Rosenkranz, H. S. et al. Development, characterization and application of predictive-toxicology models. SAR QSAR Environ. Res.10, 277–298 (1999). CASPubMed Google Scholar
Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P. & Blower, P. LeadScope: software for exploring large sets of screening data. J. Chem. Inf. Comput. Sci.40, 1302–1314 (2000). CASPubMed Google Scholar
Labute, P. Binary QSAR: a new method for the determination of quantitative structure activity relationships. Pac. Symp. Biocomput.4, 444–455 (1999). Google Scholar
Gao, H. Application of BCUT metrics and genetic algorithm in binary QSAR analysis. J. Chem. Inf. Comput. Sci.41, 402–407 (2001). CASPubMed Google Scholar
Gao, H., Williams, C., Labute, P. & Bajorath, J. Binary quantitative structure–activity relationship (QSAR) analysis of estrogen receptor ligands. J. Chem. Inf. Comput. Sci.39, 164–168 (1999). CASPubMed Google Scholar
Stahura, F. L., Godden, J. W., Xue, L. & Bajorath, J. Distinguishing between natural products and synthetic molecules by Shannon descriptor entropy analysis and binary QSAR calculations. J. Chem. Inf. Comput. Sci.40, 1245–1252 (2000). CASPubMed Google Scholar
Stahura, F. L., Godden, J. W. & Bajorath, J. Differential Shannon entropy analysis identifies molecular descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations. J. Chem. Inf. Comput. Sci.42, 550–558 (2002). CASPubMed Google Scholar
Harper, G., Bradshaw, J., Gittin, J. C., Green, D. V. S. & Leach, A. R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci.41, 1295–1300 (2001). CASPubMed Google Scholar
Doman, T. N. et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem.45, 2213–2221 (2002). One of very few case studies that directly compares the performance of VS and HTS analysis. CASPubMed Google Scholar
Singh, J. et al. Identification of potent and novel α4β1 antagonists using in silico screening. J. Med. Chem.45, 2988–2993 (2002). CASPubMed Google Scholar
Gr¨neberg, S., Stubbs, M. T. & Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem.45, 3588–3602 (2002). Google Scholar
Stahura, F. L., Xue, L., Godden, J. W. & Bajorath, J. Methods for compound selection focused on hits and application in drug discovery. J. Mol. Graph. Model.20, 439–446 (2002). CASPubMed Google Scholar
Manallack, D. T. et al. Selecting screening candidates for kinase and G protein-coupled receptor targets using neural networks. J. Chem. Inf. Comput. Sci.42, 1256–1262 (2002). CASPubMed Google Scholar
Valler, M. J. & Green, D. Diversity screening versus focused screening in drug discovery. Drug Discov. Today5, 286–293 (2000). CASPubMed Google Scholar
Martin, Y. C., Kofron, J. L. & Traphagen, L. M. Do structurally similar molecules have similar biological activity? J. Med. Chem.45, 4350–4358 (2002). CASPubMed Google Scholar
Engels, M. F. M. & Venkatarangan, P. Smart screening: approaches to efficient HTS. Curr. Opin. Drug Discov. Develop.4, 275–283 (2001). An instructive description of a sequential-screening strategy, including several interesting benchmark calculations. CAS Google Scholar
Engels, M. F. M., Thielemans, T., Verbinnen, D., Tollenaere, J. P. & Verbeeck, R. CerBeruS: a system supporting the sequential screening process. J. Chem. Inf. Comput. Sci.40, 241–245 (2000). CASPubMed Google Scholar
Jones-Hertzog, D. K., Mukhopadhyay, P., Keefer, C. E. & Young, S. S. Use of recursive partitioning in the sequential screening of G protein-coupled receptors. J. Pharmacol. Toxicol. Methods42, 207–215 (1999). CASPubMed Google Scholar
Kauvar, L. M. et al. Predicting ligand binding to proteins by affinity fingerprinting. Chem. Biol.2, 107–118 (1995). CASPubMed Google Scholar
Dixon, S. L. & Villar, H. O. Bioactive diversity and screening library selection via affinity fingerprinting. J. Chem. Inf. Comput. Sci.38, 1192–1203 (1998). This paper describes the application of affinity fingerprints in iterative screening situations and provides insights into the predictive value of this approach. CASPubMed Google Scholar
McGovern, S. L., Caselli, E., Grigorieff, N. & Shoichet, B. K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem.45, 1712–1722 (2002). CASPubMed Google Scholar
Powers, R. A., Morandi, F. & Shoichet, B. K. Structure-based discovery of a novel, noncovalent inhibitor AmpC β-lactamase. Structure10, 1013–1023 (2002). CASPubMed Google Scholar
Sotriffer, C. A., Gohlke, H. & Klebe, G. Docking into knowledge-based potential fields: a comparative evaluation of DrugScore. J. Med. Chem.45, 1967–1970 (2002). CASPubMed Google Scholar
Wei, B., Baase, W., Weaver, L. Matthews & Shoichet, B. K. A model binding site for testing scoring functions in molecular docking. J. Mol. Biol.322, 339–355 (2002). A well-designed study that uses T4 lysozyme mutant structures as a versatile model system for the evaluation of docking and scoring functions. CASPubMed Google Scholar