Hepatitis C virus replicons: potential role for drug development (original) (raw)

References

  1. Lauer, G. M. & Walker, B. D. Hepatitis C virus infection. N. Engl. J. Med. 345, 41–52 (2001).
    Article CAS PubMed Google Scholar
  2. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 81, 1631–1648 (2000).
    Article CAS PubMed Google Scholar
  3. Rosenberg, S. Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313, 451–464 (2001).
    Article CAS PubMed Google Scholar
  4. Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr. Top. Microbiol. Immunol. 242, 55–84 (2000).
    CAS PubMed Google Scholar
  5. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476–1483 (1992).
    CAS PubMed PubMed Central Google Scholar
  6. Wang, C., Sarnow, P. & Siddiqui, A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 67, 3338–3344 (1993).
    CAS PubMed PubMed Central Google Scholar
  7. Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nature Struct. Biol. 7, 1105–1110 (2000).
    Article CAS PubMed Google Scholar
  8. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  9. Xu, Z. et al. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20, 3840–3848 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  10. Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7, 710–721 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  11. Kim, D. W., Gwack, Y., Han, J. H. & Choe, J. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem. Biophys. Res. Commun. 215, 160–166 (1995).
    Article CAS PubMed Google Scholar
  12. Suzich, J. A. et al. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J. Virol. 67, 6152–6158 (1993).
    CAS PubMed PubMed Central Google Scholar
  13. Gwack, Y., Kim, D. W., Han, J. H. & Choe, J. Characterization of RNA binding activity and RNA helicase activity of the hepatitis C virus NS3 protein. Biochem. Biophys. Res. Commun. 225, 654–659 (1996).
    Article CAS PubMed Google Scholar
  14. Tai, C. L., Chi, W. K., Chen, D. S. & Hwang, L. H. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70, 8477–8484 (1996).
    CAS PubMed PubMed Central Google Scholar
  15. Behrens, S. E., Tomei, L. & De, F. R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15, 12–22 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  16. Lohmann, V., Körner, F., Herian, U. & Bartenschlager, R. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416–8428 (1997).
    CAS PubMed PubMed Central Google Scholar
  17. Egger, D. et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974–5984 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  18. Bartenschlager, R. & Lohmann, V. Novel cell culture systems for the hepatitis C virus. Antiviral Res. 52, 1–17 (2001).
    Article CAS PubMed Google Scholar
  19. Kato, N. & Shimotohno, K. Systems to culture hepatitis C virus. Curr. Top. Microbiol. Immunol. 242, 261–278 (2000).
    CAS PubMed Google Scholar
  20. Behrens, S. E., Grassmann, C. W., Thiel, H. J., Meyers, G. & Tautz, N. Characterization of an autonomous subgenomic pestivirus RNA replicon. J. Virol. 72, 2364–2372 (1998).
    CAS PubMed PubMed Central Google Scholar
  21. Khromykh, A. A. & Westaway, E. G. Subgenomic replicons of the flavivirus Kunjin: construction and applications. J. Virol. 71, 1497–1505 (1997).
    CAS PubMed PubMed Central Google Scholar
  22. Kaplan, G. & Racaniello, V. R. Construction and characterization of poliovirus subgenomic replicons. J. Virol. 62, 1687–1696 (1988).
    CAS PubMed PubMed Central Google Scholar
  23. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).
    Article CAS PubMed Google Scholar
  24. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).
    Article CAS PubMed Google Scholar
  25. Krieger, N., Lohmann, V. & Bartenschlager, R. Enhancement of hepatitis C virus RNA replication by cell-culture-adaptive mutations. J. Virol. 75, 4614–4624 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  26. Lohmann, V., Körner, F., Dobierzewska, A. & Bartenschlager, R. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J. Virol. 75, 1437–1449 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  27. Guo, J. T., Bichko, V. V. & Seeger, C. Effect of α-interferon on the hepatitis C virus replicon. J. Virol. 75, 8516–8523 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Ikeda, M., Yi, M., Li, K. & Lemon, S. M. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76, 2997–3006 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  29. Frese, M., Pietschmann, T., Moradpour, D., Haller, O. & Bartenschlager, R. Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol. 82, 723–733 (2001).
    Article CAS PubMed Google Scholar
  30. Pietschmann, T. et al. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J. Virol. 76, 4008–4021 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  31. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 75, 12047–12057 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  32. Friebe, P. & Bartenschlager, R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 76, 5326–5338 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  33. Cheney, I. W. et al. Mutations in NS5B polymerase of hepatitis C virus: impacts on in vitro enzymatic activity and viral RNA replication in the subgenomic replicon cell culture. Virology 297, 298–306 (2002).
    Article CAS PubMed Google Scholar
  34. Frese, M. et al. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35, 694–703 (2002).
    Article CAS PubMed Google Scholar
  35. Tardif, K. D., Mori, K. & Siddiqui, A. Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453–7459 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  36. Pflugheber, J. et al. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl Acad. Sci. USA 99, 4650–4655 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  37. Yi, M., Bodola, F. & Lemon, S. M. Subgenomic hepatitis C virus (HCV) replicons inducing the expression of a secreted enzymatic reporter protein. (in the press).
  38. Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K. & Bartenschlager, R. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J. Virol. 75, 1252–1264 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  39. Young, S. D. Inhibition of HIV-1 integrase by small molecules: the potential for a new class of AIDS chemotherapeutics. Curr. Opin. Drug Discov. Dev. 4, 402–410 (2001).
    CAS Google Scholar
  40. Zoulim, F. & Trepo, C. New antiviral agents for the therapy of chronic hepatitis B virus infection. Intervirology 42, 125–144 (1999).
    Article CAS PubMed Google Scholar
  41. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863 (1982).
    CAS PubMed Google Scholar
  42. Yi, M. & Lemon, S. M. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J. Virol. 76, 1171–1180 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  43. De Tomassi, A. et al. Cell clones selected from the Huh7 human hepatoma cell line support efficient replication of a subgenomic GB virus B replicon. J. Virol. 76, 7736–7746 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  44. Kishine, H. et al. Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochem. Biophys. Res. Commun. 293, 993–999 (2002).
    Article CAS PubMed Google Scholar
  45. Sureau, C., Romet-Lemonne, J. L., Mullins, J. I. & Essex, M. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell 47, 37–47 (1986).
    Article CAS PubMed Google Scholar
  46. Gripon, P. et al. Successful HBV infection of a novel highly differentiated human hepatoma cell line. Proc. Natl Acad. Sci. USA (in the press).

Download references