Antibacterial effects of vitamin D (original) (raw)
Chapuy, M. C. et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos. Int.7, 439–443 (1997). CASPubMed Google Scholar
Heaney, R. P., Dowell, M. S., Hale, C. A. & Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr.22, 142–146 (2003). CASPubMed Google Scholar
Souberbielle, J. C. et al. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun. Rev.9, 709–715 (2010). CASPubMed Google Scholar
Holick, M. F. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol.19, 73–78 (2009). PubMed Google Scholar
Holick, M. F. Vitamin D deficiency. N. Engl. J. Med.357, 266–281 (2007). CASPubMed Google Scholar
Holick, M. F. Vitamin D: its role in cancer prevention and treatment. Prog. Biophys. Mol. Biol.92, 49–59 (2006). CASPubMed Google Scholar
Adams, J. S. & Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab.4, 80–90 (2008). CASPubMedPubMed Central Google Scholar
Gombart, A. F., Luong, Q. T. & Koeffler, H. P. Vitamin D compounds: activity against microbes and cancer. Anticancer Res.26, 2531–2542 (2006). CASPubMed Google Scholar
Zehnder, D. et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J. Clin. Endocrinol. Metab.86, 888–894 (2001). CASPubMed Google Scholar
Rook, G. A. et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology57, 159–163 (1986). CASPubMedPubMed Central Google Scholar
Bunce, C. M., Brown, G. & Hewison, M. Vitamin D and haematopoiesis. Trends Endocrinol. Metab.8, 245–251 (1997). CASPubMed Google Scholar
Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol.7, 179–190 (2007). CASPubMed Google Scholar
Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311, 1770–1773 (2006). CASPubMed Google Scholar
Risso, A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J. Leukoc. Biol.68, 785–792 (2000). CASPubMed Google Scholar
Adams, J. S. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol.182, 4289–4295 (2009). CASPubMed Google Scholar
Wang, T. T. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol.173, 2909–2912 (2004). CASPubMed Google Scholar
Gombart, A. F., Borregaard, N. & Koeffler, H. P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J.19, 1067–1077 (2005). CASPubMed Google Scholar
Gombart, A. F., Saito, T. & Koeffler, H. P. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics10, 321 (2009). PubMedPubMed Central Google Scholar
Liu, P. T. et al. Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS ONE4, e5810 (2009). PubMedPubMed Central Google Scholar
Kao, C. Y., Kim, C., Huang, F. & Wu, R. Requirements for two proximal NF-kappaB binding sites and IkappaB-zeta in IL-17A-induced human beta-defensin 2 expression by conducting airway epithelium. J. Biol. Chem.283, 15309–15318 (2008). CASPubMedPubMed Central Google Scholar
Wang, T. T. et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn's disease. J. Biol. Chem.285, 2227–2231 (2010). CASPubMed Google Scholar
Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol.6, 9–20 (2006). CASPubMed Google Scholar
Krishnan, A. V. & Feldman, D. Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endocr. Relat. Cancer17, R19–R38 (2010). CASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). CASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). CASPubMed Google Scholar
Krutzik, S. R. et al. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol.181, 7115–7120 (2008). CASPubMed Google Scholar
Sly, L. M., Lopez, M., Nauseef, W. M. & Reiner, N. E. 1Alpha,25-dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J. Biol. Chem.276, 35482–35493 (2001). CASPubMed Google Scholar
Kohchi, C., Inagawa, H., Nishizawa, T. & Soma, G. ROS and innate immunity. Anticancer Res.29, 817–821 (2009). CASPubMed Google Scholar
Chan, J., Xing, Y., Magliozzo, R. S. & Bloom, B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med.175, 1111–1122 (1992). CASPubMed Google Scholar
Rockett, K. A. et al. 1,25-dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect. Immun.66, 5314–5321 (1998). CASPubMedPubMed Central Google Scholar
Yang, C. S. et al. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J. Immunol.182, 3696–3705 (2009). CASPubMed Google Scholar
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol.3, 710–720 (2003). CASPubMed Google Scholar
Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science290, 1717–1721 (2000). CASPubMedPubMed Central Google Scholar
Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell119, 753–766 (2004). CASPubMed Google Scholar
Høyer-Hansen, M., Bastholm, L., Mathiasen, I. S., Elling, F. & Jäättelä, M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ.12, 1297–1309 (2005). PubMed Google Scholar
Wang, J., Lian, H., Zhao, Y., Kauss, M. A. & Spindel, S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J. Biol. Chem.283, 25596–25605 (2008). CASPubMed Google Scholar
Yuk, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe6, 231–243 (2009). CASPubMed Google Scholar
Shin, D. M. et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signaling. Cell. Microbiol.12, 1648–1665 (2010). CASPubMedPubMed Central Google Scholar
O'Kelly, J., Uskokovic, M., Lemp, N., Vadgama, J. & Koeffler, H. P. Novel Gemini-vitamin D3 analog inhibits tumor cell growth and modulates the Akt/mTOR signaling pathway. J. Steroid Biochem. Mol. Biol.100, 107–116 (2006). CASPubMed Google Scholar
Sanjuan, M. A., Milasta, S. & Green, D. R. Toll-like receptor signaling in the lysosomal pathways. Immunol. Rev.227, 203–220 (2009). CASPubMed Google Scholar
Takahashi, K. et al. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol. Immunotoxicol.24, 335–347 (2002). CASPubMed Google Scholar
Sørensen, O., Cowland, J. B., Askaa, J. & Borregaard, N. An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J. Immunol. Methods206, 53–59 (1997). PubMed Google Scholar
Schauber, J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest.117, 803–811 (2007). CASPubMedPubMed Central Google Scholar
Nijnik, A., Pistolic, J., Wyatt, A., Tam, S. & Hancock, R. E. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J. Immunol.183, 5788–5798 (2009). CASPubMed Google Scholar
Carretero, M. et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J. Invest. Dermatol.128, 223–236 (2008). CASPubMed Google Scholar
Schauber, J. & Gallo, R. L. Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J. Invest. Dermatol.127, 510–512 (2007). CASPubMed Google Scholar
Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med.347, 1151–1160 (2002). CASPubMed Google Scholar
Evans, K. N. et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol. Reprod.75, 816–822 (2006). CASPubMed Google Scholar
Liu, N. et al. Vitamin D induces innate antibacterial responses in human trophoblasts via an intracrine pathway. Biol. Reprod.80, 398–406 (2009). CASPubMedPubMed Central Google Scholar
Zehnder, D. et al. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am. J. Pathol.161, 105–114 (2002). CASPubMedPubMed Central Google Scholar
Evans, K. N., Bulmer, J. N., Kilby, M. D. & Hewison, M. Vitamin D and placental-decidual function. J. Soc. Gynecol. Investig.11, 263–271 (2004). CASPubMed Google Scholar
King, A. E. et al. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta28, 161–169 (2007). CASPubMed Google Scholar
Gombart, A. F., O'Kelly, J., Saito, T. & Koeffler, H. P. Regulation of the CAMP gene by 1,25(OH)2D3 in various tissues. J. Steroid Biochem. Mol. Biol.103, 552–557 (2007). CASPubMed Google Scholar
Yim, S., Dhawan, P., Ragunath, C., Christakos, S. & Diamond, G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J. Cyst. Fibros.6, 403–410 (2007). CASPubMedPubMed Central Google Scholar
Hansdottir, S. et al. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol.181, 7090–7099 (2008). CASPubMed Google Scholar
Schauber, J., Dorschner, R. A., Yamasaki, K., Brouha, B. & Gallo, R. L. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology118, 509–519 (2006). CASPubMedPubMed Central Google Scholar
Lagishetty, V. et al. 1alpha-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines. J. Steroid Biochem. Mol. Biol.121, 228–233 (2010). CASPubMedPubMed Central Google Scholar
Bell, N. H., Stern, P. H., Pantzer, E., Sinha, T. K. & DeLuca, H. F. Evidence that increased circulating 1 alpha, 25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J. Clin. Invest.64, 218–225 (1979). CASPubMedPubMed Central Google Scholar
Papapoulos, S. E. et al. 1, 25-dihydroxycholecalciferol in the pathogenesis of the hypercalcaemia of sarcoidosis. Lancet1, 627–630 (1979). CASPubMed Google Scholar
Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W. & Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N. Engl. J. Med.305, 440–443 (1981). CASPubMed Google Scholar
Adams, J. S., Sharma, O. P., Gacad, M. A. & Singer, F. R. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J. Clin. Invest.72, 1856–1860 (1983). CASPubMedPubMed Central Google Scholar
Adams, J. S. & Gacad, M. A. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med.161, 755–765 (1985). CASPubMed Google Scholar
Bosch, X. Hypercalcemia due to endogenous overproduction of 1,25-dihydroxyvitamin D in Crohn's disease. Gastroenterology114, 1061–1065 (1998). CASPubMed Google Scholar
Karakelides, H. et al. Vitamin D-mediated hypercalcemia in slack skin disease: evidence for involvement of extrarenal 25-hydroxyvitamin D 1alpha-hydroxylase. J. Bone Miner. Res.21, 1496–1499 (2006). PubMed Google Scholar
Hewison, M. et al. Vitamin D-mediated hypercalcemia in lymphoma: evidence for hormone production by tumor-adjacent macrophages. J. Bone Miner. Res.18, 579–582 (2003). PubMed Google Scholar
Abreu, M. T. et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut53, 1129–1136 (2004). CASPubMedPubMed Central Google Scholar
Kallas, M., Green, F., Hewison, M., White, C. & Kline, G. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. J. Clin. Endocrinol. Metab.95, 3111–3117 (2010). CASPubMed Google Scholar
Evans, K. N. et al. Increased expression of 25-hydroxyvitamin D-1alpha-hydroxylase in dysgerminomas: a novel form of humoral hypercalcemia of malignancy. Am. J. Pathol.165, 807–813 (2004). CASPubMedPubMed Central Google Scholar
Chan, T. Y. Vitamin D deficiency and susceptibility to tuberculosis. Calcif. Tissue Int.66, 476–478 (2000). CASPubMed Google Scholar
Wejse, C. et al. Serum 25-hydroxyvitamin D in a West African population of tuberculosis patients and unmatched healthy controls. Am. J. Clin. Nutr.86, 1376–1383 (2007). CASPubMed Google Scholar
Williams, B., Williams, A. J. & Anderson, S. T. Vitamin D deficiency and insufficiency in children with tuberculosis. Pediatr. Infect. Dis. J.27, 941–942 (2008). PubMed Google Scholar
Ustianowski, A., Shaffer, R., Collin, S., Wilkinson, R. J. & Davidson, R. N. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect.50, 432–437 (2005). CASPubMed Google Scholar
Chocano-Bedoya, P. & Ronnenberg, A. G. Vitamin D and tuberculosis. Nutr. Rev.67, 289–293 (2009). PubMed Google Scholar
Kamboh, M. I. & Ferrell, R. E. Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum. Genet.72, 281–293 (1986). CASPubMed Google Scholar
Martineau, A. R. et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur. Respir. J.35, 1106–1112 (2010). CASPubMed Google Scholar
Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet376, 180–188 (2010). CASPubMedPubMed Central Google Scholar
Chun, R. F. et al. Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab.95, 3368–3376 (2010). CASPubMedPubMed Central Google Scholar
Martineau, A. R., Honecker, F. U., Wilkinson, R. J. & Griffiths, C. J. Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol.103, 793–798 (2007). CASPubMed Google Scholar
Martineau, A. R. et al. A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med.176, 208–213 (2007). CASPubMed Google Scholar
Nursyam, E. W., Amin, Z. & Rumende, C. M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones.38, 3–5 (2006). PubMed Google Scholar
Wejse, C. et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med.179, 843–850 (2009). CASPubMed Google Scholar
Janssens, W. et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax65, 215–220 (2010). PubMed Google Scholar
Bergman, P., Walter-Jallow, L., Broliden, K., Agerberth, B. & Söderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res.5, 410–415 (2007). CASPubMed Google Scholar
Gombart, A. F. et al. Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin. Infect. Dis.48, 418–424 (2009). CASPubMed Google Scholar
Jeng, L. et al. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med.7, 28 (2009). PubMedPubMed Central Google Scholar
Vagianos, K., Bector, S., McConnell, J. & Bernstein, C. N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enteral. Nutr.31, 311–319 (2007). CASPubMed Google Scholar
Pappa, H. M. et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics118, 1950–1961 (2006). PubMed Google Scholar
Pappa, H. M., Grand, R. J. & Gordon, C. M. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm. Bowel Dis.12, 1162–1174 (2006). PubMed Google Scholar
Kong, J. et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol.294, G208–G216 (2008). CASPubMed Google Scholar
Froicu, M. & Cantorna, M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol.8, 5 (2007). PubMedPubMed Central Google Scholar
Froicu, M. et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol. Endocrinol.17, 2386–2392 (2003). CASPubMed Google Scholar
Liu, N. et al. Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology149, 4799–4808 (2008). CASPubMedPubMed Central Google Scholar
Lagishetty, V. et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology151, 2423–2432 (2010). CASPubMedPubMed Central Google Scholar
Cantorna, M. T. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog. Biophys. Mol. Biol.92, 60–64 (2006). CASPubMed Google Scholar
Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol.4, 269–273 (2003). CASPubMed Google Scholar
Packey, C. D. & Sartor, R. B. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis.22, 292–301 (2009). PubMedPubMed Central Google Scholar
Gersemann, M., Wehkamp, J., Fellermann, K. & Stange, E. F. Crohn's disease—defect in innate defence. World J. Gastroenterol.14, 5499–5503 (2008). CASPubMedPubMed Central Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol.9, 313–323 (2009). CASPubMedPubMed Central Google Scholar