The cellular and molecular bases of leptin and ghrelin resistance in obesity (original) (raw)
Stewart, S. T., Cutler, D. M. & Rosen, A. B. Forecasting the effects of obesity and smoking on U.S. life expectancy. N. Engl. J. Med.361, 2252–2260 (2009). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994). CASPubMed Google Scholar
Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature395, 763–770 (1998). CASPubMed Google Scholar
Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med.1, 1311–1314 (1995). CASPubMed Google Scholar
Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med.334, 292–295 (1996). CASPubMed Google Scholar
Havel, P. J. et al. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J. Clin. Endocrinol. Metab.81, 4406–4413 (1996). CASPubMed Google Scholar
Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet.14, 95–97 (1996). CASPubMed Google Scholar
Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest.98, 1101–1106 (1996). CASPubMedPubMed Central Google Scholar
Cohen, P. et al. Selective deletion of leptin receptor in neurons leads to obesity. J. Clin. Invest.108, 1113–1121 (2001). CASPubMedPubMed Central Google Scholar
Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron49, 191–203 (2006). CASPubMed Google Scholar
Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron42, 983–991 (2004). CASPubMed Google Scholar
Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab.14, 313–323 (2011). CASPubMedPubMed Central Google Scholar
Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab.3, 681–693 (2014). CASPubMedPubMed Central Google Scholar
Dodd, G. T. et al. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab.20, 639–649 (2014). CASPubMedPubMed Central Google Scholar
Leal-Cerro, A. et al. Serum leptin levels in male marathon athletes before and after the marathon run. J. Clin. Endocrinol. Metab.83, 2376–2379 (1998). CASPubMed Google Scholar
Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med.1, 1155–1161 (1995). CASPubMed Google Scholar
Lago, R., Gomez, R., Lago, F., Gomez-Reino, J. & Gualillo, O. Leptin beyond body weight regulation — current concepts concerning its role in immune function and inflammation. Cell. Immunol.252, 139–145 (2008). CASPubMed Google Scholar
Lam, Q. L. & Lu, L. Role of leptin in immunity. Cell. Mol. Immunol.4, 1–13 (2007). CASPubMed Google Scholar
Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest.100, 270–278 (1997). CASPubMedPubMed Central Google Scholar
Rahmouni, K., Haynes, W. G. & Mark, A. L. Cardiovascular and sympathetic effects of leptin. Curr. Hypertens. Rep.4, 119–125 (2002). PubMed Google Scholar
Elias, C. F. & Purohit, D. Leptin signaling and circuits in puberty and fertility. Cell. Mol. Life Sci.70, 841–862 (2013). CASPubMed Google Scholar
Chen, X. X. & Yang, T. Roles of leptin in bone metabolism and bone diseases. J. Bone Miner. Metab.33, 474–485 (2015). CASPubMed Google Scholar
Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell83, 1263–1271 (1995). CASPubMed Google Scholar
Tartaglia, L. A. The leptin receptor. J. Biol. Chem.272, 6093–6096 (1997). CASPubMed Google Scholar
Chua, S. C. Jr et al. Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics45, 264–270 (1997). CASPubMed Google Scholar
Bates, S. H. & Myers, M. G. Jr. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol. Metab.14, 447–452 (2003). CASPubMed Google Scholar
Ihle, J. N. & Kerr, I. M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet.11, 69–74 (1995). CASPubMed Google Scholar
Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science268, 251–255 (1995). CASPubMed Google Scholar
Kloek, C. et al. Regulation of Jak kinases by intracellular leptin receptor sequences. J. Biol. Chem.277, 41547–41555 (2002). CASPubMed Google Scholar
Devos, R. et al. Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J. Biol. Chem.272, 18304–18310 (1997). CASPubMed Google Scholar
Couturier, C. & Jockers, R. Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem.278, 26604–26611 (2003). CASPubMed Google Scholar
Allison, M. B. & Myers, M. G. Jr. 20 years of leptin: connecting leptin signaling to biological function. J. Endocrinol.223, T25–T35 (2014). CASPubMedPubMed Central Google Scholar
Hekerman, P. et al. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J.272, 109–119 (2005). CASPubMed Google Scholar
Gong, Y. et al. The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J. Biol. Chem.282, 31019–31027 (2007). CASPubMed Google Scholar
Bjorbak, C. et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J. Biol. Chem.275, 40649–40657 (2000). CASPubMed Google Scholar
Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science312, 927–930 (2006). CASPubMed Google Scholar
Harlan, S. M., Guo, D. F., Morgan, D. A., Fernandes-Santos, C. & Rahmouni, K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab.17, 599–606 (2013). CASPubMedPubMed Central Google Scholar
Rosenbaum, M., Murphy, E. M., Heymsfield, S. B., Matthews, D. E. & Leibel, R. L. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab.87, 2391–2394 (2002). CASPubMed Google Scholar
Mark, A. L., Correia, M. L., Rahmouni, K. & Haynes, W. G. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J. Hypertens.20, 1245–1250 (2002). CASPubMed Google Scholar
Correia, M. L. et al. The concept of selective leptin resistance: evidence from agouti yellow obese mice. Diabetes51, 439–442 (2002). CASPubMed Google Scholar
Rahmouni, K., Morgan, D. A., Morgan, G. M., Mark, A. L. & Haynes, W. G. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes54, 2012–2018 (2005). CASPubMed Google Scholar
Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell159, 1404–1416 (2014). CASPubMedPubMed Central Google Scholar
Mark, A. L. Selective leptin resistance revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol.305, R566–R581 (2013). CASPubMedPubMed Central Google Scholar
Sinha, M. K. et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J. Clin. Invest.98, 1277–1282 (1996). CASPubMedPubMed Central Google Scholar
Magni, P. et al. Free and bound plasma leptin in normal weight and obese men and women: relationship with body composition, resting energy expenditure, insulin-sensitivity, lipid profile and macronutrient preference. Clin. Endocrinol.62, 189–196 (2005). CAS Google Scholar
Houseknecht, K. L. et al. Evidence for leptin binding to proteins in serum of rodents and humans: modulation with obesity. Diabetes45, 1638–1643 (1996). CASPubMed Google Scholar
Schwartz, M. W., Peskind, E., Raskind, M., Boyko, E. J. & Porte, D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med.2, 589–593 (1996). CASPubMed Google Scholar
Morgan, D. A., Thedens, D. R., Weiss, R. & Rahmouni, K. Mechanisms mediating renal sympathetic activation to leptin in obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol.295, R1730–R1736 (2008). CASPubMedPubMed Central Google Scholar
Banks, W. A. & Farrell, C. L. Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. Am. J. Physiol. Endocrinol. Metab.285, E10–E15 (2003). CASPubMed Google Scholar
Pan, W. et al. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology149, 2798–2806 (2008). CASPubMedPubMed Central Google Scholar
Caro, J. F. et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet348, 159–161 (1996). CASPubMed Google Scholar
Banks, W. A. Leptin transport across the blood–brain barrier: implications for the cause and treatment of obesity. Curr. Pharm. Des.7, 125–133 (2001). CASPubMed Google Scholar
de Git, K. C. & Adan, R. A. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes. Rev.16, 207–224 (2015). CASPubMed Google Scholar
Koga, S. et al. Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression. Neurobiol. Dis.71, 180–192 (2014). CASPubMed Google Scholar
Jayaram, B. et al. Astrocytic leptin-receptor knockout mice show partial rescue of leptin resistance in diet-induced obesity. J. Appl. Physiol.114, 734–741 (2013). CASPubMedPubMed Central Google Scholar
Pierce, A. A. & Xu, A. W. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J. Neurosci.30, 723–730 (2010). CASPubMedPubMed Central Google Scholar
Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab.19, 293–301 (2014). CASPubMedPubMed Central Google Scholar
Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci.15, 700–702 (2012). CASPubMedPubMed Central Google Scholar
Zhang, C. et al. Tat-modified leptin is more accessible to hypothalamus through brain–blood barrier with a significant inhibition of body-weight gain in high-fat-diet fed mice. Exp. Clin. Endocrinol. Diabetes118, 31–37 (2010). CASPubMed Google Scholar
Guo, D. F. & Rahmouni, K. Molecular basis of the obesity associated with Bardet–Biedl syndrome. Trends Endocrinol. Metab.22, 286–293 (2011). CASPubMedPubMed Central Google Scholar
Guo, D. F. et al. The BBsome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet.12, e1005890 (2016). PubMedPubMed Central Google Scholar
Seo, S. et al. Requirement of Bardet–Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet.18, 1323–1331 (2009). CASPubMedPubMed Central Google Scholar
Irani, B. G., Dunn-Meynell, A. A. & Levin, B. E. Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderate-fat diet and predisposition to obesity. Endocrinology148, 310–316 (2007). CASPubMed Google Scholar
Starr, R. et al. A family of cytokine-inducible inhibitors of signalling. Nature387, 917–921 (1997). CASPubMed Google Scholar
Minamoto, S. et al. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem. Biophys. Res. Commun.237, 79–83 (1997). CASPubMed Google Scholar
Bjorbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell1, 619–625 (1998). CASPubMed Google Scholar
Howard, J. K. et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat. Med.10, 734–738 (2004). CASPubMed Google Scholar
Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med.10, 739–743 (2004). CASPubMed Google Scholar
Pedroso, J. A. et al. Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol. Metab.3, 608–618 (2014). CASPubMedPubMed Central Google Scholar
Reed, A. S. et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes59, 894–906 (2010). CASPubMedPubMed Central Google Scholar
Ahmad, F., Li, P. M., Meyerovitch, J. & Goldstein, B. J. Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J. Biol. Chem.270, 20503–20508 (1995). CASPubMed Google Scholar
Maegawa, H. et al. Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities. J. Biol. Chem.270, 7724–7730 (1995). CASPubMed Google Scholar
Seely, B. L. et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes45, 1379–1385 (1996). CASPubMed Google Scholar
Myers, M. P. et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem.276, 47771–47774 (2001). CASPubMed Google Scholar
Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science283, 1544–1548 (1999). CASPubMed Google Scholar
Cook, W. S. & Unger, R. H. Protein tyrosine phosphatase 1B: a potential leptin resistance factor of obesity. Dev. Cell2, 385–387 (2002). CASPubMed Google Scholar
Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell2, 489–495 (2002). CASPubMed Google Scholar
Klaman, L. D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol.20, 5479–5489 (2000). CASPubMedPubMed Central Google Scholar
Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med.12, 917–924 (2006). CASPubMed Google Scholar
Tsou, R. C., Zimmer, D. J., De Jonghe, B. C. & Bence, K. K. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology153, 4227–4237 (2012). CASPubMedPubMed Central Google Scholar
Tsou, R. C., Rak, K. S., Zimmer, D. J. & Bence, K. K. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor. Mol. Metab.3, 301–312 (2014). CASPubMedPubMed Central Google Scholar
He, R. J., Yu, Z. H., Zhang, R. Y. & Zhang, Z. Y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol. Sin.35, 1227–1246 (2014). CASPubMedPubMed Central Google Scholar
Lantz, K. A. et al. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obes. (Silver Spring)18, 1516–1523 (2010). CAS Google Scholar
Ahima, R. S. et al. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes51, 2099–2104 (2002). CASPubMed Google Scholar
Takahashi, N., Qi, Y., Patel, H. R. & Ahima, R. S. A novel aminosterol reverses diabetes and fatty liver disease in obese mice. J. Hepatol.41, 391–398 (2004). CASPubMed Google Scholar
Zasloff, M. et al. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. Relat. Metab. Disord.25, 689–697 (2001). CASPubMed Google Scholar
Loh, K. et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab.14, 684–699 (2011). CASPubMedPubMed Central Google Scholar
Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell160, 88–104 (2015). CASPubMedPubMed Central Google Scholar
Rousso-Noori, L. et al. Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab.13, 562–572 (2011). CASPubMed Google Scholar
Toledano-Katchalski, H. et al. Protein tyrosine phosphatase ε inhibits signaling by mitogen-activated protein kinases. Mol. Cancer Res.1, 541–550 (2003). CASPubMed Google Scholar
Schmidt, M., Dekker, F. J. & Maarsingh, H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol. Rev.65, 670–709 (2013). PubMed Google Scholar
McKnight, G. S. et al. Cyclic AMP, PKA, and the physiological regulation of adiposity. Recent Prog. Horm. Res.53, 139–159 (1998). CASPubMed Google Scholar
Almahariq, M., Mei, F. C. & Cheng, X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol. Metab.25, 60–71 (2014). CASPubMed Google Scholar
Fukuda, M., Williams, K. W., Gautron, L. & Elmquist, J. K. Induction of leptin resistance by activation of cAMP–Epac signaling. Cell Metab.13, 331–339 (2011). CASPubMedPubMed Central Google Scholar
Yan, J. et al. Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1. Mol. Cell. Biol.33, 918–926 (2013). CASPubMedPubMed Central Google Scholar
De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology146, 4192–4199 (2005). CASPubMed Google Scholar
Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest.122, 153–162 (2012). CASPubMed Google Scholar
Posey, K. A. et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab.296, E1003–E1012 (2009). CASPubMed Google Scholar
Zhang, X. et al. Hypothalamic IKKß/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell135, 61–73 (2008). CASPubMedPubMed Central Google Scholar
Romanatto, T. et al. Deletion of tumor necrosis factor-α receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J. Biol. Chem.284, 36213–36222 (2009). CASPubMedPubMed Central Google Scholar
Milanski, M. et al. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes61, 1455–1462 (2012). CASPubMedPubMed Central Google Scholar
Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab.9, 35–51 (2009). CASPubMed Google Scholar
Hosoi, T. et al. Endoplasmic reticulum stress induces leptin resistance. Mol. Pharmacol.74, 1610–1619 (2008). CASPubMed Google Scholar
Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell161, 999–1011 (2015). CASPubMedPubMed Central Google Scholar
Williams, K. W. et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab.20, 471–482 (2014). CASPubMedPubMed Central Google Scholar
Perlmutter, D. H. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res.52, 832–836 (2002). PubMed Google Scholar
Carducci, M. A. et al. A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res.7, 3047–3055 (2001). CASPubMed Google Scholar
Ma, X. et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1–PGC1α transcriptional axis. Cell Metab.22, 695–708 (2015). CASPubMed Google Scholar
Contreras, C. et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep.9, 366–377 (2014). CASPubMedPubMed Central Google Scholar
Contreras, C. et al. Effects of neonatal programming on hypothalamic mechanisms controlling energy balance. Horm. Metab. Res.45, 935–944 (2013). CASPubMed Google Scholar
Duque-Guimaraes, D. E. & Ozanne, S. E. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol. Metab.24, 525–535 (2013). CASPubMed Google Scholar
Lopez, M. et al. A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia48, 140–148 (2005). CASPubMed Google Scholar
Lopez, M. et al. Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. Int. J. Obes.31, 371–377 (2007). CAS Google Scholar
Lucas, A. Programming by early nutrition: an experimental approach. J. Nutr.128, 401S–406S (1998). CASPubMed Google Scholar
Morris, M. J., Velkoska, E. & Cole, T. J. Central and peripheral contributions to obesity-associated hypertension: impact of early overnourishment. Exp. Physiol.90, 697–702 (2005). PubMed Google Scholar
Davidowa, H. & Plagemann, A. Different responses of ventromedial hypothalamic neurons to leptin in normal and early postnatally overfed rats. Neurosci. Lett.293, 21–24 (2000). CASPubMed Google Scholar
Davidowa, H. & Plagemann, A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport11, 2795–2798 (2000). CASPubMed Google Scholar
Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature402, 656–660 (1999). CASPubMed Google Scholar
Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature407, 908–913 (2000). CASPubMed Google Scholar
Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature409, 194–198 (2001). CASPubMed Google Scholar
Seoane, L. M. et al. Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats. Eur. J. Endocrinol.143, R7–R9 (2000). CASPubMed Google Scholar
Peino, R. et al. Ghrelin-induced growth hormone secretion in humans. Eur. J. Endocrinol.143, R11–R14 (2000). CASPubMed Google Scholar
Takaya, K. et al. Ghrelin strongly stimulates growth hormone release in humans. J. Clin. Endocrinol. Metab.85, 4908–4911 (2000). CASPubMed Google Scholar
Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab.86, 5992 (2001). CASPubMed Google Scholar
Theander-Carrillo, C. et al. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest.116, 1983–1993 (2006). CASPubMedPubMed Central Google Scholar
López, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab.7, 389–399 (2008). PubMed Google Scholar
Foster-Schubert, K. E. & Cummings, D. E. Emerging therapeutic strategies for obesity. Endocr. Rev.27, 779–793 (2006). PubMed Google Scholar
Muller, T. D., Perez-Tilve, D., Tong, J., Pfluger, P. T. & Tschop, M. H. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J. Cachexia Sarcopenia Muscle1, 159–167 (2010). PubMedPubMed Central Google Scholar
Lainscak, M., von Haehling, S., Doehner, W. & Anker, S. D. The obesity paradox in chronic disease: facts and numbers. J. Cachexia Sarcopenia Muscle3, 1–4 (2012). PubMedPubMed Central Google Scholar
von Haehling, S., Morley, J. E. & Anker, S. D. From muscle wasting to sarcopenia and myopenia: update 2012. J. Cachexia Sarcopenia Muscle3, 213–217 (2012). PubMedPubMed Central Google Scholar
Gutierrez, J. A. et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl Acad. Sci. USA105, 6320–6325 (2008). CASPubMedPubMed Central Google Scholar
Yang, J., Brown, M. S., Liang, G., Grishin, N. V. & Goldstein, J. L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell132, 387–396 (2008). CASPubMed Google Scholar
Gonzalez, C. R., Vazquez, M. J., López, M. & Dieguez, C. Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa. J. Mol. Endocrinol.41, 415–421 (2008). CASPubMed Google Scholar
Kirchner, H. et al. GOAT links dietary lipids with the endocrine control of energy balance. Nat. Med.15, 741–745 (2009). CASPubMedPubMed Central Google Scholar
Delhanty, P. J., Neggers, S. J. & van der Lely, A. J. Mechanisms in endocrinology: ghrelin: the differences between acyl- and des-acyl ghrelin. Eur. J. Endocrinol.167, 601–608 (2012). CASPubMed Google Scholar
Delhanty, P. J., Neggers, S. J. & van der Lely, A. J. Should we consider des-acyl ghrelin as a separate hormone and if so, what does it do? Front. Horm. Res.42, 163–174 (2014). PubMed Google Scholar
Toshinai, K. et al. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology147, 2306–2314 (2006). CASPubMed Google Scholar
Heppner, K. M. et al. Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors. Diabetes63, 122–131 (2014). CASPubMed Google Scholar
Zhang, J. V. et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science310, 996–999 (2005). CASPubMed Google Scholar
Seoane, L. M., Al Massadi, O., Pazos, Y., Pagotto, U. & Casanueva, F. F. Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J. Endocrinol. Invest.29, RC13–RC15 (2006). CASPubMed Google Scholar
Nogueiras, R. et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology148, 21–26 (2007). CASPubMed Google Scholar
Gourcerol, G., St Pierre, D. H. & Tache, Y. Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)? Regul. Pept.141, 1–7 (2007). CASPubMed Google Scholar
Kobelt, P. et al. Peripheral obestatin has no effect on feeding behavior and brain Fos expression in rodents. Peptides29, 1018–1027 (2008). CASPubMedPubMed Central Google Scholar
Tschop, M. et al. Post-prandial decrease of circulating human ghrelin levels. J. Endocrinol. Invest.24, RC19–RC21 (2001). CASPubMed Google Scholar
Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes50, 1714–1719 (2001). CASPubMed Google Scholar
Drazen, D. L., Vahl, T. P., D'Alessio, D. A., Seeley, R. J. & Woods, S. C. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology147, 23–30 (2006). CASPubMed Google Scholar
Seoane, L. M. et al. Sensory stimuli directly acting at the central nervous system regulate gastric ghrelin secretion. an ex vivo organ culture study. Endocrinology148, 3998–4006 (2007). CASPubMed Google Scholar
Briggs, D. I. & Andrews, Z. B. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology93, 48–57 (2011). CASPubMed Google Scholar
Zigman, J. M., Bouret, S. G. & Andrews, Z. B. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol. Metab.27, 54–63 (2016). CASPubMed Google Scholar
Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes50, 707–709 (2001). CASPubMed Google Scholar
Otto, B. et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol.145, 669–673 (2001). CASPubMed Google Scholar
Otto, B. et al. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology30, 577–581 (2005). CASPubMed Google Scholar
Cummings, D. E. et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat. Med.8, 643–644 (2002). CASPubMed Google Scholar
DelParigi, A. et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader–Willi syndrome. J. Clin. Endocrinol. Metab.87, 5461–5464 (2002). CASPubMed Google Scholar
Feigerlová, E. et al. Hyperghrelinemia precedes obesity in Prader–Willi syndrome. J. Clin. Endocrinol. Metab.93, 2800–2805 (2008). PubMed Google Scholar
Kweh, F. A. et al. Hyperghrelinemia in Prader–Willi syndrome begins in early infancy long before the onset of hyperphagia. Am. J. Med. Genet. A. 167A, 69–79 (2015). Google Scholar
De Waele, K. et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader–Willi syndrome. Eur. J. Endocrinol.159, 381–388 (2008). CASPubMed Google Scholar
Neary, N. M. et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab.89, 2832–2836 (2004). CASPubMed Google Scholar
Schmid, D. A. et al. Ghrelin stimulates appetite, imagination of food, GH, ACTH, and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology30, 1187–1192 (2005). CASPubMed Google Scholar
Druce, M. R. et al. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. Relat. Metab. Disord.29, 1130–1136 (2005). CAS Google Scholar
Druce, M. R. et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int. J. Obes.30, 293–296 (2005). Google Scholar
Liu, J. et al. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J. Clin. Endocrinol. Metab.93, 1980–1987 (2008). CASPubMedPubMed Central Google Scholar
Sun, Y., Ahmed, S. & Smith, R. G. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell. Biol.23, 7973–7981 (2003). CASPubMedPubMed Central Google Scholar
Pfluger, P. T. et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am. J. Physiol. Gastrointest. Liver Physiol.294, G610–G618 (2008). CASPubMed Google Scholar
McFarlane, M. R., Brown, M. S., Goldstein, J. L. & Zhao, T. J. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab.20, 54–60 (2014). CASPubMedPubMed Central Google Scholar
Nishi, Y. et al. Ingested medium-chain fatty acids are directly utilized for the acyl-modification of ghrelin. Endocrinology146, 2255–2264 (2005). CASPubMed Google Scholar
Sangiao-Alvarellos, S. et al. Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology150, 4562–4574 (2009). CASPubMedPubMed Central Google Scholar
Perez-Tilve, D. et al. Ghrelin-induced adiposity is independent of orexigenic effects. FASEB J.25, 2814–2822 (2011). CASPubMedPubMed Central Google Scholar
Andrews, Z. B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature454, 846–851 (2008). CASPubMedPubMed Central Google Scholar
Gao, S., Casals, N., Keung, W., Moran, T. H. & Lopaschuk, G. D. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiol. Behav.118, 165–170 (2013). CASPubMed Google Scholar
Al, M. O. et al. Review of novel aspects of the regulation of ghrelin secretion. Curr. Drug Metab.15, 398–413 (2014). Google Scholar
Sun, Y., Wang, P., Zheng, H. & Smith, R. G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl Acad. Sci. USA101, 4679–4684 (2004). CASPubMedPubMed Central Google Scholar
Guan, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res.48, 23–29 (1997). CASPubMed Google Scholar
Tannenbaum, G. S., Lapointe, M., Beaudet, A. & Howard, A. D. Expression of growth hormone secretagogue-receptors by growth hormone-releasing hormone neurons in the mediobasal hypothalamus. Endocrinology139, 4420–4423 (1998). CASPubMed Google Scholar
Willesen, M. G., Kristensen, P. & Romer, J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology70, 306–316 (1999). CASPubMed Google Scholar
Nogueiras, R. et al. Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes53, 2552–2558 (2004). CASPubMed Google Scholar
Garcia, A., Alvarez, C. V., Smith, R. G. & Dieguez, C. Regulation of pit-1 expression by ghrelin and ghrp-6 through the gh secretagogue receptor. Mol. Endocrinol.15, 1484–1495 (2001). CASPubMed Google Scholar
van der Lely, A. J., Tschop, M., Heiman, M. L. & Ghigo, E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev.25, 426–457 (2004). CASPubMed Google Scholar
Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab.7, 377–388 (2008). CASPubMed Google Scholar
Lage, R. et al. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J.24, 2670–2679 (2010). CASPubMedPubMed Central Google Scholar
Varela, L. et al. Ghrelin and lipid metabolism: key partners in energy balance. J. Mol. Endocrinol.46, R43–R63 (2011). CASPubMed Google Scholar
López, M., Nogueiras, R., Tena-Sempere, M. & Dieguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol.12, 421–432 (2016). PubMed Google Scholar
Dietrich, M. O. et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J. Neurosci.30, 11815–11825 (2010). CASPubMedPubMed Central Google Scholar
Velasquez, D. A. et al. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes60, 1177–1185 (2011). CASPubMedPubMed Central Google Scholar
Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem.279, 12005–12008 (2004). CASPubMed Google Scholar
Kola, B. et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE3, e1797 (2008). PubMedPubMed Central Google Scholar
Sangiao-Alvarellos, S. et al. Influence of ghrelin and GH deficiency on AMPK and hypothalamic lipid metabolism. J. Neuroendocrinol.22, 543–556 (2010). CASPubMed Google Scholar
Yavari, A. et al. Chronic activation of γ2 AMPK induces obesity and reduces ß cell function. Cell Metab.23, 821–836 (2016). CASPubMedPubMed Central Google Scholar
Sierra, A. Y. et al. CPT1C is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J. Biol. Chem.283, 6878–6885 (2008). CASPubMed Google Scholar
Ramírez, S. et al. Hypothalamic ceramide levels regulated by CPT1C mediate the orexigenic effect of ghrelin. Diabetes62, 2329–2337 (2013). PubMedPubMed Central Google Scholar
Martins, L. et al. Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS ONE7, e46923 (2012). CASPubMedPubMed Central Google Scholar
Stevanovic, D. et al. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol. Cell. Endocrinol.381, 280–290 (2013). CASPubMed Google Scholar
Martinez de Morentin, P. B. et al. Hypothalamic mTOR: the rookie energy sensor. Curr. Mol. Med.14, 3–21 (2014). CASPubMed Google Scholar
Sakkou, M. et al. A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab.5, 450–463 (2007). CASPubMed Google Scholar
Seoane, L. M. et al. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothalamus. Endocrinology144, 544–551 (2003). CASPubMed Google Scholar
Nogueiras, R. et al. Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability. Endocrinology149, 3009–3015 (2008). CASPubMedPubMed Central Google Scholar
Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell146, 992–1003 (2011). CASPubMedPubMed Central Google Scholar
Kohno, D., Gao, H. Z., Muroya, S., Kikuyama, S. & Yada, T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes52, 948–956 (2003). CASPubMed Google Scholar
Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron37, 649–661 (2003). CASPubMed Google Scholar
Romero-Pico, A. et al. Hypothalamic κ-opioid receptor modulates the orexigenic effect of ghrelin. Neuropsychopharmacology38, 1296–1307 (2013). CASPubMedPubMed Central Google Scholar
Kola, B. et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem.280, 25196–25201 (2005). CASPubMed Google Scholar
Lim, C. T. et al. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol. Cell. Endocrinol.365, 303–308 (2013). CASPubMedPubMed Central Google Scholar
Kola, B. et al. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release. FASEB J.27, 5112–5121 (2013). CASPubMedPubMed Central Google Scholar
Olszewski, P. K., Grace, M. K., Billington, C. J. & Levine, A. S. Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides24, 919–923 (2003). CASPubMed Google Scholar
Olszewski, P. K., Billington, C. J., Grace, M. K. & Levine, A. S. α-Melanocyte stimulating hormone and ghrelin: central interaction in feeding control. Peptides28, 2084–2089 (2007). CASPubMed Google Scholar
Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest.116, 3229–3239 (2006). CASPubMedPubMed Central Google Scholar
Romero-Pico, A. et al. Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology229, 275–283 (2013). CASPubMed Google Scholar
Hewson, A. K., Tung, L. Y., Connell, D. W., Tookman, L. & Dickson, S. L. The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic. Diabetes51, 3412–3419 (2002). CASPubMed Google Scholar
Kohno, D. et al. Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway. Endocrinology148, 2251–2263 (2007). CASPubMed Google Scholar
Scott, V., McDade, D. M. & Luckman, S. M. Rapid changes in the sensitivity of arcuate nucleus neurons to central ghrelin in relation to feeding status. Physiol. Behav.90, 180–185 (2007). CASPubMed Google Scholar
Briggs, D. I. et al. Calorie-restricted weight loss reverses high-fat diet-induced ghrelin resistance, which contributes to rebound weight gain in a ghrelin-dependent manner. Endocrinology154, 709–717 (2013). CASPubMed Google Scholar
Perreault, M. et al. Resistance to the orexigenic effect of ghrelin in dietary-induced obesity in mice: reversal upon weight loss. Int. J. Obes. Relat. Metab. Disord.28, 879–885 (2004). CASPubMed Google Scholar
English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R. & Wilding, J. P. Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab.87, 2984 (2002). CASPubMed Google Scholar
Uchida, A. et al. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol. Metab.3, 717–730 (2014). CASPubMedPubMed Central Google Scholar
Mani, B. K., Osborne-Lawrence, S., Vijayaraghavan, P., Hepler, C. & Zigman, J. M. β1-adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J. Clin. Invest.126, 3467–3478 (2016). PubMedPubMed Central Google Scholar
Banks, W. A., Burney, B. O. & Robinson, S. M. Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood–brain barrier. Peptides29, 2061–2065 (2008). CASPubMedPubMed Central Google Scholar
Briggs, D. I., Enriori, P. J., Lemus, M. B., Cowley, M. A. & Andrews, Z. B. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology151, 4745–4755 (2010). CASPubMed Google Scholar
Gardiner, J. V. et al. The hyperphagic effect of ghrelin is inhibited in mice by a diet high in fat. Gastroenterology138, 2468–2476 (2010). CASPubMed Google Scholar
Briggs, D. I. et al. Evidence that diet-induced hyperleptinemia, but not hypothalamic gliosis, causes ghrelin resistance in NPY/AgRP neurons of male mice. Endocrinology155, 2411–2422 (2014). PubMed Google Scholar
Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest.125, 846–858 (2015). PubMedPubMed Central Google Scholar
Collden, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol. Metab.4, 15–24 (2014). PubMedPubMed Central Google Scholar
Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci.15, 1350–1355 (2012). CASPubMedPubMed Central Google Scholar
Perello, M. et al. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. J. Comp. Neurol.520, 281–294 (2012). CASPubMedPubMed Central Google Scholar
Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature377, 530–532 (1995). CASPubMed Google Scholar
Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci.1, 271–272 (1998). CASPubMed Google Scholar
Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron23, 775–786 (1999). CASPubMed Google Scholar
de Morentin, P. B. & López, M. “Mens sana in corpore sano”: exercise and hypothalamic ER stress. PLoS Biol.8, e1000464 (2010). Google Scholar
Naznin, F. et al. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J. Endocrinol.226, 81–92 (2015). CASPubMedPubMed Central Google Scholar
Martin, T. L. et al. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J. Biol. Chem.281, 18933–18941 (2006). CASPubMed Google Scholar
Dagon, Y. et al. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake. Cell Metab.16, 104–112 (2012). CASPubMedPubMed Central Google Scholar
Lockie, S. H., Dinan, T., Lawrence, A. J., Spencer, S. J. & Andrews, Z. B. Diet-induced obesity causes ghrelin resistance in reward processing tasks. Psychoneuroendocrinology62, 114–120 (2015). CASPubMed Google Scholar
Finger, B. C., Dinan, T. G. & Cryan, J. F. Diet-induced obesity blunts the behavioural effects of ghrelin: studies in a mouse-progressive ratio task. Psychopharmacology220, 173–181 (2012). CASPubMed Google Scholar
Wang, W. & Tao, Y. X. Ghrelin receptor mutations and human obesity. Prog. Mol. Biol. Transl Sci.140, 131–150 (2016). CASPubMed Google Scholar
Pantel, J. et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J. Clin. Invest.116, 760–768 (2006). CASPubMedPubMed Central Google Scholar
Pantel, J. et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J. Clin. Endocrinol. Metab.94, 4334–4341 (2009). CASPubMed Google Scholar
Liu, G., Fortin, J. P., Beinborn, M. & Kopin, A. S. Four missense mutations in the ghrelin receptor result in distinct pharmacological abnormalities. J. Pharmacol. Exp. Ther.322, 1036–1043 (2007). CASPubMed Google Scholar
Inoue, H. et al. Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature. J. Clin. Endocrinol. Metab.96, E373–E378 (2011). CASPubMed Google Scholar
Rahmouni, K. Obesity-associated hypertension: recent progress in deciphering the pathogenesis. Hypertension64, 215–221 (2014). CASPubMed Google Scholar