- Bonanni, L., Cutolo, A. & Dalla Vestra, M. Novel approaches for the treatment of familial hypercholesterolemia. Exp. Clin. Endocrinol. Diabetes 124, 583–587 (2016).
Article CAS PubMed Google Scholar
- Banach, M. et al. Statin intolerance — an attempt at a unified definition. Position paper from an international lipid expert panel. Expert Opin. Drug Saf. 14, 935–955 (2015).
Article CAS PubMed Google Scholar
- Orringer, C. E. et al. Update on the use of PCSK9 inhibitors in adults: recommendations from an expert panel of the National Lipid Association. J. Clin. Lipidol. 4, 880–890 (2017).
Article Google Scholar
- Mattijssen, F. & Kersten, S. Regulation of triglyceride metabolism by angiopoietin-like proteins. Biochim. Biophys. Acta 1821, 782–789 (2012).
Article CAS PubMed Google Scholar
- Conklin, D. et al. Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62, 477–482 (1999).
Article CAS PubMed Google Scholar
- Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2014).
Article CAS PubMed Google Scholar
- Shimamura, M. et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27, 366–372 (2007).
Article CAS PubMed Google Scholar
- Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Zandbergen, F., van Dijk, S., Muller, M. & Kersten, S. Fasting-induced adipose factor/angiopoietin-like protein 4: a potential target for dyslipidemia. Future Lipidol. 1, 227–236 (2006).
Article CAS Google Scholar
- Catoire, M. et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc. Natl. Acad. Sci. USA 111, E1043–E1052 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Dijk, W. et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife 4, e08428 (2015).
Article PubMed PubMed Central Google Scholar
- Kersten, S. et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem. 275, 28488–28493 (2000).
Article CAS PubMed Google Scholar
- Kroupa, O. et al. Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC Physiol. 12, 13 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Sukonina, V., Lookene, A., Olivecrona, T. & Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103, 17450–17455 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Desai, U. et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc. Natl Acad. Sci. USA 104, 11766–11771 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Lichtenstein, L. et al. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 12, 580–592 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Quagliarini, F. et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl Acad. Sci. USA 109, 19751–19756 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Ren, G., Kim, J. Y. & Smas, C. M. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E334–E351 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Zhang, R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424, 786–792 (2012).
Article CAS PubMed Google Scholar
- Cox, A. R. et al. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia 58, 1523–1531 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Gusarova, V. et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159, 691–696 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Jiao, Y., Le Lay, J., Yu, M., Naji, A. & Kaestner, K. H. Elevated mouse hepatic betatrophin expression does not increase human beta-cell replication in the transplant setting. Diabetes 63, 1283–1288 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Yi, P., Park, J. S. & Melton, D. A. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153, 747–758 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Yi, P., Park, J. S. & Melton, D. A. Retraction notice to: Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 168, 326 (2017).
Article CAS PubMed Google Scholar
- Dewey, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).
Article PubMed PubMed Central CAS Google Scholar
- Graham, M. J. et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377, 222–232 (2017).
Article CAS PubMed Google Scholar
- Koishi, R. et al. Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30, 151–157 (2002).
Article CAS PubMed Google Scholar
- Fu, Z., Yao, F., Abou-Samra, A. B. & Zhang, R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem. Biophys. Res. Commun. 430, 1126–1131 (2013).
Article CAS PubMed Google Scholar
- Jin, W. et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 6, 129–136 (2007).
Article PubMed PubMed Central CAS Google Scholar
- Ono, M. et al. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J. Biol. Chem. 278, 41804–41809 (2003).
Article CAS PubMed Google Scholar
- Essalmani, R. et al. Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes. J. Biol. Chem. 288, 26410–26418 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Khetarpal, S. A. et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. Cell Metab. 24, 234–245 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Schjoldager, K. T. et al. O-Glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids. J. Biol. Chem. 285, 36293–36303 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119, 70–79 (2009).
CAS PubMed Google Scholar
- Liu, J. et al. A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatr. Res. 77, 732–739 (2015).
Article CAS PubMed Google Scholar
- Kaplan, R. et al. Regulation of the angiopoietin-like protein 3 gene by LXR. J. Lipid Res. 44, 136–143 (2003).
Article CAS PubMed Google Scholar
- Ge, H. et al. Differential regulation and properties of angiopoietin-like proteins 3 and 4. J. Lipid Res. 46, 1484–1490 (2005).
Article CAS PubMed Google Scholar
- Inaba, T. et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278, 21344–21351 (2003).
Article CAS PubMed Google Scholar
- Fugier, C. et al. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J. Biol. Chem. 281, 11553–11559 (2006).
Article CAS PubMed Google Scholar
- Inukai, K. et al. ANGPTL3 is increased in both insulin-deficient and -resistant diabetic states. Biochem. Biophys. Res. Commun. 317, 1075–1079 (2004).
Article CAS PubMed Google Scholar
- Lu, B., Moser, A., Shigenaga, J. K., Grunfeld, C. & Feingold, K. R. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem. Biophys. Res. Commun. 391, 1737–1741 (2010).
Article CAS PubMed Google Scholar
- Matsusue, K., Miyoshi, A., Yamano, S. & Gonzalez, F. J. Ligand-activated PPARβ efficiently represses the induction of LXR-dependent promoter activity through competition with RXR. Mol. Cell. Endocrinol. 256, 23–33 (2006).
Article PubMed PubMed Central CAS Google Scholar
- Shimamura, M. et al. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 301, 604–609 (2003).
Article CAS PubMed Google Scholar
- Pramfalk, C., Parini, P., Gustafsson, U., Sahlin, S. & Eriksson, M. Effects of high-dose statin on the human hepatic expression of genes involved in carbohydrate and triglyceride metabolism. J. Intern. Med. 269, 333–339 (2011).
Article CAS PubMed Google Scholar
- Tikka, A. et al. Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci. Rep. 34, e00160 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Nidhina Haridas, P. A. et al. Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin. J. Clin. Endocrinol. Metab. 100, E1299–E1307 (2015).
Article CAS PubMed Google Scholar
- Ando, Y. et al. A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J. Lipid Res. 44, 1216–1223 (2003).
Article CAS PubMed Google Scholar
- Fujimoto, K., Koishi, R., Shimizugawa, T. & Ando, Y. Angptl3-null mice show low plasma lipid concentrations by enhanced lipoprotein lipase activity. Exp. Anim. 55, 27–34 (2006).
Article CAS PubMed Google Scholar
- Koster, A. et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146, 4943–4950 (2005).
Article CAS PubMed Google Scholar
- Wang, Y. et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl Acad. Sci. USA 112, 11630–11635 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Gusarova, V. et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56, 1308–1317 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Wang, Y. et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res. 56, 1296–1307 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Shimizugawa, T. et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277, 33742–33748 (2002).
Article CAS PubMed Google Scholar
- Lee, E.-C. et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J. Biol. Chem. 284, 13735–13745 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Shan, L. et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J. Biol. Chem. 284, 1419–1424 (2009).
Article CAS PubMed Google Scholar
- Sonnenburg, W. K. et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J. Lipid Res. 50, 2421–2429 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Yau, M. H. et al. A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J. Biol. Chem. 284, 11942–11952 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Chi, X. et al. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab. http://dx.doi.org/10.1016/j.molmet.2017.06.014 (2017).
- Haller, J. F. et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res. 58, 1166–1173 (2017).
Article PubMed PubMed Central CAS Google Scholar
- Mysling, S. et al. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife 5, e20958 (2016).
Article PubMed PubMed Central Google Scholar
- Dijk, W. et al. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J. Lipid Res. 57, 1670–1683 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285, 27561–27570 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Wang, Y. et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl Acad. Sci. USA 110, 16109–16114 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Minicocci, I. et al. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism. J. Lipid Res. 57, 1097–1107 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Martin-Campos, J. M. et al. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta 413, 552–555 (2012).
Article CAS PubMed Google Scholar
- Noto, D. et al. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol. 32, 805–809 (2012).
Article CAS PubMed Google Scholar
- Pisciotta, L. et al. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ. Cardiovasc. Genet. 5, 42–50 (2012).
Article CAS PubMed Google Scholar
- Fazio, S. et al. A form of familial hypobetalipoproteinaemia not due to a mutation in the apolipoprotein B gene. J. Intern. Med. 229, 41–47 (1991).
Article CAS PubMed Google Scholar
- Minicocci, I. et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97, E1266–E1275 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Robciuc, M. R. et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. Vasc. Biol. 33, 1706–1713 (2013).
Article CAS PubMed Google Scholar
- Minicocci, I. et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J. Lipid Res. 54, 3481–3490 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Mehta, N. et al. Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits. Arterioscler. Thromb. Vasc. Biol. 34, 1057–1063 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Robciuc, M. R., Tahvanainen, E., Jauhiainen, M. & Ehnholm, C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J. Lipid Res. 51, 824–831 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Musunuru, K. & Kathiresan, S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ. Res. 118, 579–585 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Stitziel, N. O. et al. ANGPTL3 deficiency and protection against coronary artery disease. J. Am. Coll. Cardiol. 69, 2054–2063 (2017).
Article PubMed PubMed Central CAS Google Scholar
- Zhang, C. C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).
Article PubMed PubMed Central CAS Google Scholar
- Camenisch, G. et al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin αvβ3 and induces blood vessel formation in vivo. J. Biol. Chem. 277, 17281–17290 (2002).
Article CAS PubMed Google Scholar