Unravelling the human genome–phenome relationship using phenome-wide association studies (original) (raw)
Sturtevant, A. J. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool.14, 59 (1913). Article Google Scholar
Gough, S. C. & Simmonds, M. J. The HLA rgion and autoimmune disease: associations and mechanisms of action. Curr. Genom.8, 453–465 (2007). ArticleCAS Google Scholar
Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003). ArticleCASPubMed Google Scholar
Criswell, L. A. et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet.76, 561–571 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhernakova, A., van Diemen, C. C. & Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet.10, 43–55 (2009). This review highlights the shared influence of genetic variants for autoimmune diseases. ArticleCASPubMed Google Scholar
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316, 1331–1336 (2007).
Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science316, 1491–1493 (2007). ArticleCASPubMed Google Scholar
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). This is the first comprehensive characterization of GWAS-identified variants from the literature. ArticleCASPubMedPubMed Central Google Scholar
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet.14, 483–495 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat. Rev. Genet.12, 204–213 (2011). This is an excellent review of pleiotropy. ArticleCASPubMed Google Scholar
Tyler, A. L., Crawford, D. C. & Pendergrass, S. A. The detection and characterization of pleiotropy. discovery, progress, and promise. Brief. Bioinform.17, 13–22 (2016). ArticleCASPubMed Google Scholar
Rastegar-Mojarad, M., Ye, Z., Kolesar, J. M., Hebbring, S. J. & Lin, S. M. Opportunities for drug repositioning from phenome-wide association studies. Nat. Biotechnol.33, 342–345 (2015). ArticleCASPubMed Google Scholar
Pendergrass, S. A. & Ritchie, M. Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery. Curr. Genet. Med. Rep.3, 92–100 (2015). ArticleCASPubMedPubMed Central Google Scholar
Pendergrass, S. A. et al. Phenome-wide association studies: embracing complexity for discovery. Hum. Hered.3–4, 111–123 (2015). ArticleCAS Google Scholar
Veyrieras, J. B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet.4, e1000214 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Pai, A. A. et al. The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet.8, e1003000 (2012). ArticleCASPubMedPubMed Central Google Scholar
Battle, A. et al. Impact of regulatory variation from RNA to protein. Science347, 664–667 (2015). This is a systematic study of the ways in which genetic variants influence the expression of transcripts and proteins. ArticleCASPubMed Google Scholar
Hause, R. et al. Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels. Am. J. Hum. Genet.95, 194–208 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet.6, e1000888 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet.10, 184–194 (2009). ArticleCASPubMedPubMed Central Google Scholar
Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res.42, D1001–D1006 (2014). ArticleCASPubMed Google Scholar
Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet.13, 395–405 (2012). ArticleCASPubMed Google Scholar
Kohane, I. S. Using electronic health records to drive discovery in disease genomics. Nat. Rev. Genet.12, 417–428 (2011). This review is an excellent overview of existing and potential uses of EHRs in the context of genomics. ArticleCASPubMed Google Scholar
Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics200, 1285–1295 (2015). ArticlePubMedPubMed Central Google Scholar
Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics200, 1051–1060 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol.70, 214–223 (2016). ArticlePubMed Google Scholar
McCarty, C. et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Medical Genomics4, 13 (2011). ArticlePubMedPubMed Central Google Scholar
Ritchie, M. D. et al. Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation127, 1377–1385 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ritchie, M. D. et al. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptbility loci. Mol. Vis.20, 1281–1295 (2014). PubMedPubMed Central Google Scholar
McDavid, A. et al. Enhancing the power of genetic association studies through the use of silver standard cases derived from electronic medical records. PLoS ONE8, e63481 (2013). ArticleCASPubMedPubMed Central Google Scholar
Turner, S. D. et al. Knowledge-driven multi-locus analysis reveals gene–gene interactions influencing HDL cholesterol level in two independent EMR-linked biobanks. PLoS ONE6, e19586 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kullo, I. J. et al. Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J. Am. Med. Inform. Assoc.17, 568–574 (2010). ArticlePubMedPubMed Central Google Scholar
Kho, A. N. et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J. Am. Med. Inform. Assoc.19, 212–218 (2012). ArticlePubMed Google Scholar
Ober, C. & Vercelli, D. Gene-environment interactions in human disease: nuisance or opportunity? Trends Genet.27, 107–115 (2011). This is an excellent review of the role of gene–environment interactions in the context of human disease. ArticleCASPubMedPubMed Central Google Scholar
Jones, R., Pembrey, M., Golding, J. & Herrick, D. The search for genenotype/phenotype associations and the phenome scan. Paediatr. Perinatal Epidemiol.19, 264–275 (2005). Article Google Scholar
Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics26, 1205–1210 (2010). This is the first published PheWAS performed in a biorepository linked to EHRs. ArticleCASPubMedPubMed Central Google Scholar
International Multiple Sclerosis Genetics Consortium et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med.357, 851–862 (2007).
De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet.41, 776–782 (2009). ArticleCASPubMedPubMed Central Google Scholar
WTCCC Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature448, 353–357 (2007). ArticleCASPubMed Google Scholar
Gudbjartsson, D. F. et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet.41, 876–878 (2009). ArticleCASPubMedPubMed Central Google Scholar
Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol.31, 1102–1111 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cheng, I. et al. Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO and CCFR consortia. Gut63, 800–807 (2014). ArticleCASPubMed Google Scholar
Park, S. L. et al. Pleiotropic associations of risk variants identified for other cancers with lung cancer risk: the PAGE and TRICL consortia. J. Natl Cancer Inst.106, dju061 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Setiawan, V. W. et al. Cross-cancer pleiotropic analysis of endometrial cancer: PAGE and E2C2 consortia. Carcinogenesis35, 2068–2073 (2014). ArticleCASPubMedPubMed Central Google Scholar
Park, S. L. et al. Association of cancer susceptibility variants with risk of multiple primary cancers: the Population Architecture using Genomics and Epidemiology study. Cancer Epidemiol. Biomarkers Prev.23, 2568–2578 (2014). ArticlePubMedPubMed Central Google Scholar
Kocarnik, J. M. et al. Pleiotropic and sex-specific effects of cancer GWAS SNPs on melanoma risk in the Population Architecture Using Genomics and Epidemiology (PAGE) study. PLoS ONE10, e0120491 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Pierce, B. L. & Ahsan, H. Genome-wide pleiotropy scan identifies HNF1A region as a novel pancreatic cancer susceptibility locus. Cancer Res.71, 4352–4358 (2011). ArticleCASPubMedPubMed Central Google Scholar
Campa, D. et al. A genome-wide pleiotropy scan does not identify new susceptibility for estrogen receptor negative breast cancer. PLoS ONE9, e85955 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Panagiotou, O. A. et al. A genome-wide pleiotropy scan for prostate cancer risk. Eur. Urol.67, 649–657 (2015). ArticlePubMed Google Scholar
Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet.7, e1002254 (2011). This study highlights the shared complex architecture of genetic factors influencing autoimmune diseases. ArticleCASPubMedPubMed Central Google Scholar
Pendergrass, S. A. et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet. Epidemiol.35, 410–422 (2011). ArticlePubMedPubMed Central Google Scholar
Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics30, 2375–2376 (2014). ArticleCASPubMedPubMed Central Google Scholar
Millard, L. A. C. et al. MR-PheWAS: hypothesis prioritization among potential causal effects of body mass index on many outcomes, using Mendelian randomization. Sci. Rep.5, 16645 (2015). ArticleCASPubMedPubMed Central Google Scholar
Matise, T. C. et al. The next PAGE in understanding complex traits: design for the analysis of population architecture using genetics and epidemiology (PAGE) study. Am. J. Epidemiol.174, 849–859 (2011). ArticlePubMedPubMed Central Google Scholar
Zeggini, E. & Ioannidis, J. P. Meta-analysis in genome-wide association studies. Pharmacogenomics10, 191–201 (2009). ArticlePubMed Google Scholar
Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet.14, 379–389 (2013). ArticleCASPubMed Google Scholar
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet.46, 234–244 (2014).
Dumitrescu, L. et al. Genetic determinants of lipid traits in diverse populations from the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet.7, e1002138 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet.41, 56–65 (2009). ArticleCASPubMed Google Scholar
Hall, M. A. et al. Detection of pleiotropy through a phenome-wide association study (PheWAS) of epidemiologic data as part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study. PLoS Genet.10, e1004678 (2014). ArticlePubMedPubMed Central Google Scholar
Mitchell, S. et al. Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. BioData Min.7, 6 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Pendergrass, S., Dudek, S., Crawford, D. & Ritchie, M. Visually integrating and exploring high throughput phenome-wide association study (PheWAS) results using PheWAS-View. BioData Min.5, 5 (2014). Article Google Scholar
Moore, C. B., Wallace, J. R., Frase, A. T., Pendergrass, S. A. & Ritchie, M. D. BioBin: a bioinformatics tools for automating the binning of rare variants using publicly available biological knowledge. BMC Med Genomics6, S6 (2013). PubMedPubMed Central Google Scholar
Pendergrass, S. A. et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. PLoS Genet.9, e1003087 (2013). This study is the first epidemiologically based PheWAS. ArticleCASPubMedPubMed Central Google Scholar
Jaffe, S. Planning for US Precision Medicine Initiative underway. Lancet385, 2448–2449 (2015). ArticlePubMed Google Scholar
Flohil, S. C. et al. Prevalence of actinic keratosis and its risk factors in the general population: The Rotterdam Study. J. Invest. Dermatol.133, 1971–1978 (2013). ArticleCASPubMed Google Scholar
Han, J. et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet.4, e1000074 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet.6, e1000993 (2010). This study explores the potential of commercial web-based surveys for study participants. ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, M. et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum. Mol. Genet.22, 2948–2959 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jacobs, L. C. et al. IRF4, MC1R and TYR genes are risk factors for actinic keratosis independent of skin color. Hum. Mol. Genet.24, 3296–3303 (2015). ArticleCASPubMed Google Scholar
Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet.12, 628–640 (2011). ArticleCASPubMed Google Scholar
Denny, J. C. et al. Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. Am. J. Hum. Genet.89, 529–542 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cronin, R. M. et al. Phenome wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Front. Genet.5, 250 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Shameer, K. et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum. Genet.133, 95–109 (2014). ArticlePubMed Google Scholar
Namjou, B. et al. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to eosinophilic esophagitis. Front. Genet.5, 401 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ye, Z. et al. Phenome-wide association studies (PheWASs) for functional variants. Eur. J. Hum. Genet.23, 523–529 (2015). ArticleCASPubMed Google Scholar
Liao, K. P. et al. Associations of autoantibodies, autoimmune risk alleles, and clinical diagnoses from the electronic medical records in rheumatoid arthritis cases and non-rheumatoid arthritis controls. Arthritis Rheum.65, 571–581 (2013). ArticleCASPubMedPubMed Central Google Scholar
Neuraz, A. et al. Phenome-wide association studies on a quantitative trait: application to TPMT enzyme activity and thiopurine therapy in pharmacogenomics. PLoS Comput. Biol.9, e1003405 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Boyd, A. D. et al. Metrics and tools for consistent cohort discovery and financial analyses post-transition to ICD-10-CM. J. Am. Med. Inform. Assoc.22, 730–737 (2015). PubMedPubMed Central Google Scholar
Turer, R. W., Zuckowsky, T. D., Causey, H. J. & Rosenbloom, S. T. ICD-10-CM Crosswalks in the primary care setting: assessing reliability of the GEMs and reimbursement mappings. J. Am. Med. Inform. Assoc.22, 417–425 (2015). ArticlePubMed Google Scholar
Hebbring, S. J. et al. Application of clinical text data for phenome-wide association studies (PheWASs). Bioinformatics31, 1981–1987 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, E. T., Laffel, L. M. B., Gonzalez, T. V. & Ludwig, D. S. Accuracy of administrative coding for type 2 diabetes in children, adolescents, and young adults. Diabetes Care30, 141–143 (2007). ArticlePubMed Google Scholar
Richesson, R. L. et al. A comparison of phenotype definitions for diabetes mellitus. J. Am. Med. Inform. Assoc.20, e319–e326 (2013). ArticlePubMedPubMed Central Google Scholar
Ritchie, M. D. et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am. J. Hum. Genet.86, 560–572 (2010). This study demonstrates that the phenotypes defined by billing codes in the EHRs can replicate known genotype–phenotype associations, suggesting that EHRs in general can be used for genomic discovery. ArticleCASPubMedPubMed Central Google Scholar
Dumitrescu, L., Diggins, K. E., Goodloe, R. & Crawford, D. C. Testing population-specific quantitative trait associations for clinical outcome relevance in a biorepository linked to electronic health records: LPA and myocardial infarction in African Americans. Pac. Symp. Biocomput.21, 96–107 (2016). PubMedPubMed Central Google Scholar
Moriyama, I. M., Loy, R. M. & Robb-Smith, A. H. T. History of the Statistical Classification of Diseases and Causes of Death[online] (CDC — National Center for Health Statistics, 2011). Google Scholar
Wiley, L. K., Shah, A., Xu, H. & Bush, W. S. ICD-9 tobacco use codes are effective identifiers of smoking status. J. Am. Med. Inform. Assoc.20, 652–658 (2013). ArticlePubMedPubMed Central Google Scholar
Oetjens, M. et al. Utilization of an EMR-biorepository to identify the genetic predictors of calcineurin-inhibitor toxicity in heart transplant recipients. Pac. Symp. Biocomput2014, 253–264 (2014). Google Scholar
Restrepo, N. A., Farber-Eger, E., Goodloe, R., Haines, J. L. & Crawford, D. C. Extracting primary open-angle glaucoma from electronic medical records for genetic association studies. PLoS ONE10, e0127817 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Davis, M. F. Sriram, S., Bush, W. S., Denny, J. C. & Haines, J. L. Automated extraction of clinical traits of multiple sclerosis in electronic medical records. J. Am. Med. Inform. Assoc.20, e334–e340 (2013). ArticlePubMedPubMed Central Google Scholar
Peissig, P. et al. Construction of atorvastatin dose-response relationships using data from a large population-based DNA biobank. Bas. Clin. Pharmacol. Toxicol.100, 286–288 (2007). ArticleCAS Google Scholar
Warner, J. L., Denny, J. C., Kreda, D. A. & Alterovitz, G. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization. J. Am. Med. Inform. Assoc.22, 324–329 (2015). ArticlePubMed Google Scholar
Yu, S. et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. J. Am. Med. Inform. Assoc.22, 993–1000 (2015). ArticlePubMedPubMed Central Google Scholar
Lasko, T. A., Denny, J. C. & Levy, M. A. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE8, e66341 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bennett, S. N. et al. Phenotype harmonization and cross-study collaboration in GWAS consortia: the GENEVA experience. Genet. Epidemiol.35, 159–173 (2011). ArticlePubMedPubMed Central Google Scholar
Doiron, D., Raina, P., Ferretti, V., L' Heureux, F. & Fortier, I. Facilitating collaborative research: implementing a platform supporting data harmonization and pooling. Nor. Epidemiol.21, 221–224 (2012). Google Scholar
Wells, B. J., Chagin, K. M., Nowacki, A. S. & Kattan, M. W. Strategies for handling missing data in electronic health record derived data. EGEMS (Wash. DC)1, 1035 (2013). Google Scholar
Avery, C. L. et al. A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS Genet.7, e1002322 (2011). ArticleCASPubMedPubMed Central Google Scholar
Plomin, R., Haworth, C. M. A. & Davis, O. S. P. Common disorders are quantitative traits. Nat. Rev. Genet.10, 872–878 (2009). ArticleCASPubMed Google Scholar
Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet.46, 1173–1186 (2014). ArticleCASPubMedPubMed Central Google Scholar
Muthalagu, A. et al. A rigorous algorithm to detect and clean inaccurate adult height records within EHR systems. Appl. Clin. Inform.5, 118–126 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wells, Q., Farber-Eger, E. & Crawford, D. Extraction of echocardiographic data from the electronic medical record is a rapid and efficient method for study of cardiac structure and function. J. Clin. Bioinforma.4, 12 (2014). ArticlePubMedPubMed Central Google Scholar
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation106, 3143–3421 (2002).
Uzuner, O., Goldstein, I., Luo, Y. & Kohane, I. Identifying patient smoking status from medical discharge records. J. Am. Med. Inform. Assoc.15, 14–24 (2008). ArticlePubMedPubMed Central Google Scholar
Kravets, N. & Parker, J. D. Linkage of the Third National Health and Nutrition Examination Survey to air quality data. Vital Health Stat 2149, 1–16, (2008). Google Scholar
Parker, J. D., Kravets, N., Nachman, K. & Sapkota, A. Linkage of the 1999–2008 National Health and Nutrition Examination Surveys to traffic indicators from the National Highway Planning Network. Natl Health Stat. Rep.45, 1–16 (2012). Google Scholar
McCarty, C. et al. Validation of PhenX measures in the personalized medicine research project for use in gene/environment studies. BMC Medical Genomics7, 3 (2014). ArticlePubMedPubMed Central Google Scholar
Strobush, L. et al. Dietary intake in the Personalized Medicine Research Project: a resource for studies of gene-diet interaction. Nutr. J.10, 13 (2011). ArticlePubMedPubMed Central Google Scholar
Roth, C., Foraker, R., Payne, P. & Embi, P. Community-level determinants of obesity: harnessing the power of electronic health records for retrospective data analysis. BMC Med. Inform. Decis. Mak.14, 36 (2014). ArticlePubMedPubMed Central Google Scholar
Schwartz, B. S. et al. Body mass index and the built and social environments in children and adolescents using electronic health records. Am. J. Prev. Med.41, e17–e28 (2011). ArticlePubMed Google Scholar
Hall, M. A. et al. Environment-wide association study (EWAS) for type 2 diabetes in the Marshfield Personalized Medicine Research Project Biobank. Pac. Symp. Biocomput.2014, 200–211 (2014). Google Scholar
Patel, C. J., Bhattacharya, J. & Butte, A. J. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS ONE5, e10746 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Patel, C., Chen, R., Kodama, K., Ioannidis, J. & Butte, A. Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus. Hum. Genet.132, 495–508 (2013). ArticleCASPubMedPubMed Central Google Scholar
Patel, C. J. & Manrai, A. K. Development of exposome correlation globes to map out environment-wide associations. Pac. Symp. Biocomput2015, 231–242 (2015). Google Scholar
Singh, A. et al. Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. J. Biomed. Inform.53, 220–228 (2015). ArticlePubMed Google Scholar
Sitlani, C. M. et al. Generalized estimating equations for genome-wide association studies using longitudinal phenotype data. Stat. Med.34, 118–130 (2015). ArticlePubMed Google Scholar
Moore, C. B. et al. Phenome-wide association study relating pretreatment laboratory parameters with human genetic variants in AIDS clinical trails group protocols. Open Forum Infect. Dis.2, ofu113 (2015). ArticleCASPubMed Google Scholar
Sohn, S. et al. MedXN: an open source medication extraction and normalization tool for clinical text. J. Am. Med. Inform. Assoc.21, 858–865 (2014). ArticlePubMedPubMed Central Google Scholar
Nelson, S. J., Zeng, K., Kilbourne, J., Powell, T. & Moore, R. Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform. Assoc.18, 441–448 (2011). ArticlePubMedPubMed Central Google Scholar
McCarty C. A., Garber, A., Reeser, J. C., Fost, N. C. & Personalized Medicine Research Project Community Advisory Group and Ethics and Security Advisory Board. Study newsletters, community and ethics advisory boards, and focus group discussions provide ongoing feedback for a large biobank. Am. J. Med. Genet.155, 737–741 (2011). Article Google Scholar
Emanuel, E. J. Reform of clinical research regulations, finally. N. Engl. J. Med.373, 2296–2299 (2015). ArticlePubMed Google Scholar
Hazin, R. et al. Ethical, legal, and social implications of incorporating genomic information into electronic health records. Genet. Med.15, 810–816 (2013). ArticlePubMedPubMed Central Google Scholar
Malin, B., Loukides, G., Benitez, K. & Clayton, E. Identifiability in biobanks: models, measures, and mitigation strategies. Hum. Genet.130, 383–392 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science339, 321–324.
Jarvik, G. P. et al. Return of genomic results to research participants: the floor, the ceiling, and the choices in between. Am. J. Hum. Genet.94, 818–826 (2014). ArticleCASPubMedPubMed Central Google Scholar
Fullerton, S. M. et al. Return of individual research results from genome-wide association studies: experience of the Electronic Medical Records and Genomics (eMERGE) Network. Genet. Med.14, 424–431 (2012). ArticlePubMedPubMed Central Google Scholar
Alipanah, N., Kim, H. & Ohno-Machado, L. Building an ontology of phentoypes for exsiting GWAS studies. AMIA Jt Summits. Transl. Sci. Proc.2013, 4–8 (2013). PubMedPubMed Central Google Scholar
Hsu, C.-N. et al. Learning phenotype mapping for integrating large genetic data. Proceedings of BioNLP 2011 Workshop[online], (2011). Google Scholar
Kohler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res.42, D966–D974 (2014). ArticleCASPubMed Google Scholar
Klei, L., Luca, D., Devlin, B. & Roeder, K. Pleiotropy and principal components of heritability combine to increase power for association analysis. Genet. Epidemiol.32, 9–19 (2008). ArticlePubMed Google Scholar
van der Sluis, S., Posthuma, D. & Dolan, C. V. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLoS Genet.9, e1003235 (2013). ArticleCASPubMedPubMed Central Google Scholar
Galesloot, T. E., van Steen, K., Kiemeney, L. A.L. M., Janss, L. L. & Vermeulen, S. H. A. Comparison of multivariate genome-wide association methods. PLoS ONE9, e95923 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, J., Pei, Y., Chris, J. & Deng, H. W. Bivariate association analyses for the mixture of continuous and binary traits with the use of extended generalized estimating equations. Genet. Epidemiol.33, 217–227 (2009). ArticlePubMedPubMed Central Google Scholar
Precision Medicine Initiative (PMI) Working Group. The precision medicine initiative cohort program — building a research foundation for 21st century medicine. National Institutes of Health[online], (2015).
Riley, W. T., Nilsen, W. J., Manolio, T. A., Masys, D. R. & Lauer, M. News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Transl. Behav. Med.5, 243–246 (2015). ArticlePubMedPubMed Central Google Scholar