Human and mouse proteases: a comparative genomic approach (original) (raw)
Barrett, A. J., Rawlings, N. D. & Woessner, J. F. Handbook of Proteolytic Enzymes (Academic Press, San Diego, 1998). An essential book in the protease field that comprehensively lists and describes proteases from many organisms. Google Scholar
Hooper, N. M. Proteases in Biology and Medicine (Portland Press, London, 2002). Google Scholar
Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer2, 161–174 (2002). This review illustrates the diversity of protease functions in pathological processes such as cancer. CAS Google Scholar
Krane, S. M. Elucidation of the potential roles of matrix metalloproteinases in skeletal biology. Arthritis Res. Ther.5, 2–4 (2003). CASPubMed Google Scholar
Esler, W. P. & Wolfe, M. S. A portrait of Alzheimer secretases — new features and familiar faces. Science293, 1449–1454 (2001). CASPubMed Google Scholar
Luttun, A., Dewerchin, M., Collen, D. & Carmeliet, P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr. Atheroscler. Rep.2, 407–416 (2000). CASPubMed Google Scholar
Uría, J. A. & López-Otín, C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res.60, 4745–4751 (2000). PubMed Google Scholar
Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science283, 978–981 (1999). CASPubMed Google Scholar
Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem.68, 1015–1068 (1999). CASPubMed Google Scholar
López-Otín, C. & Overall, C. M. Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol.3, 509–519 (2002). This article introduces new concepts and approaches for the global analysis of proteases in normal and pathological conditions, and especially in cancer. Google Scholar
Rawlings, N. D., O'Brien, E. & Barrett, A. J. MEROPS: the protease database. Nucleic Acids Res.30, 343–346 (2002). A description of a database that is freely available to the academic community, which represents an essential resource for research on proteases. CASPubMedPubMed Central Google Scholar
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
Venter, J. C. et al. The sequence of the human genome. Science291, 1304–1351 (2001). CASPubMed Google Scholar
Zucker, S. & Chen, W. -T. Cell Surface Proteases (Academic Press, San Diego, 2003). A compilation of articles that cover recent advances in the functional analysis of membrane-bound proteases, which are a group of enzymes that are of growing relevance in normal and pathological conditions. Google Scholar
Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science298, 608–611 (2002). CASPubMed Google Scholar
Urban, S., Lee, J. R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J.21, 4277–4286 (2002). CASPubMedPubMed Central Google Scholar
Mariño, G. et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem.278, 3671–3678 (2003). PubMed Google Scholar
Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science296, 2215–2218 (2002). CASPubMed Google Scholar
Makarova, K. S., Aravind, L. & Koonin, E. V. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci.25, 50–52 (2000). CASPubMed Google Scholar
Krylov, D. M. & Koonin, E. V. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr. Biol.11, 584–587 (2001). Google Scholar
Mouse Genome Sequence Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002).
Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet.3, 137–144 (2002). CASPubMed Google Scholar
Balbín, M. et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem.276, 10253–10262 (2001). PubMed Google Scholar
Deussing, J. et al. Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13. Genomics79, 225–240 (2002). CASPubMed Google Scholar
Sol-Church, K. et al. Evolution of placentally expressed cathepsins. Biochem. Biophys. Res. Commun.293, 23–29 (2002). CASPubMed Google Scholar
Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene248, 1–14 (2000). CASPubMed Google Scholar
Brachvogel, B. et al. Molecular cloning and expression analysis of a novel member of the disintegrin and metalloprotease-domain (ADAM) family. Gene288, 203–210 (2002). CASPubMed Google Scholar
Olsson, A. Y. & Lundwall, A. Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem. Biophys. Res. Commun.299, 305–311 (2002). PubMed Google Scholar
Yousef, G. M. & Diamandis, E. P. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev.22, 184–204 (2001). CASPubMed Google Scholar
Luo, L. Y. et al. The serum concentration of human kallikrein 10 represents a novel biomarker for ovarian cancer diagnosis and prognosis. Cancer Res.63, 807–811 (2003). CASPubMed Google Scholar
Balk, S. P., Ko, Y. J. & Bubley, G. J. Biology of prostate-specific antigen. J. Clin. Oncol.21, 383–391 (2003). CASPubMed Google Scholar
Caputo, E., Manco, G., Mandrich, L. & Guardiola, J. A novel aspartyl proteinase from apocrine epithelia and breast tumors. J. Biol. Chem.275, 7935–7941 (2000). CASPubMed Google Scholar
Yoshida, M., Kaneko, M., Kurachi, H. & Osawa, M. Identification of two rodent genes encoding homologues to seminal vesicle autoantigen: a gene family including the gene for prolactin-inducible protein. Biochem. Biophys. Res. Commun.281, 94–100 (2001). CASPubMed Google Scholar
Lunderius, C. & Hellman, L. Characterization of the gene encoding mouse mast cell protease 8 (mMCP-8), and a comparative analysis of hematopoietic serine protease genes. Immunogenetics53, 225–232 (2001). CASPubMed Google Scholar
Garnier, G., Circolo, A., Xu, Y. & Volanakis, J. E. Complement C1r and C1s genes are duplicated in the mouse: differential expression generates alternative isomorphs in the liver and in the male reproductive system. Biochem. J.371, 631–640 (2003). CASPubMedPubMed Central Google Scholar
Nishimura, H. et al. The ADAM1a and ADAM1b genes, instead of the ADAM1 (fertilin-α) gene, are localized on mouse chromosome 5. Gene291, 67–76 (2002). CASPubMed Google Scholar
Grima, J., Wong, C. C., Zhu, L. J., Zong, S. D. & Cheng, C. Y. Testin secreted by Sertoli cells is associated with the cell surface, and its expression correlates with the disruption of Sertoli-germ cell junctions but not the inter-Sertoli tight junction. J. Biol. Chem.273, 21040–21053 (1998). CASPubMed Google Scholar
Fischer, H., Koenig, U., Eckhart, L. & Tschachler, E. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun.293, 722–726 (2002). CASPubMed Google Scholar
O'Sullivan, C. M., Liu, S. Y., Karpinka, J. B. & Rancourt, D. E. Embryonic hatching enzyme strypsin/ISP1 is expressed with ISP2 in endometrial glands during implantation. Mol. Reprod. Dev.62, 328–334 (2002). CASPubMed Google Scholar
Kageyama, T. Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell. Mol. Life Sci.59, 288–306 (2002). CASPubMed Google Scholar
Rose, S. D. & MacDonald, R. J. Evolutionary silencing of the human elastase I gene (ELA1). Hum. Mol. Genet.6, 897–903 (1997). CASPubMed Google Scholar
Suzuki, H. & Kumagai, H. Autocatalytic processing of γ-glutamyltranspeptidase. J. Biol. Chem.277, 43536–43543 (2002). CASPubMed Google Scholar
Paulding, C. A., Ruvolo, M. & Haber, D. A. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc. Natl Acad. Sci. USA100, 2507–2511 (2003). CASPubMedPubMed Central Google Scholar
Fougerousse, F. et al. Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum. Mol. Genet.9, 165–173 (2000). CASPubMed Google Scholar
Emes, R. D., Goodstadt, L., Winter, E. E. & Ponting, C. P. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum. Mol. Genet.12, 701–709 (2003). An excellent analysis of the differences among human and mouse genomes and discussion of their physiological relevance. CASPubMed Google Scholar
Salamonsen, L. A. & Nie, G. Proteases at the endometrial–trophoblast interface: their role in implantation. Rev. Endocr. Metab. Disord.3, 133–143 (2002). CASPubMed Google Scholar
Fata, J. E., Ho, A. T., Leco, K. J., Moorehead, R. A. & Khokha, R. Cellular turnover and extracellular matrix remodeling in female reproductive tissues: functions of metalloproteinases and their inhibitors. Cell. Mol. Life Sci.57, 77–95 (2000). CASPubMed Google Scholar
Curry, T. E. & Osteen, K. G. Cyclic changes in the matrix metalloproteinase system in the ovary and uterus. Biol. Reprod.64, 1285–1296 (2001). CASPubMed Google Scholar
Evans, J. P. Fertilin-β and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays23, 628–639 (2001). CASPubMed Google Scholar
Seals, D. F. & Courtneidge, S. A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev.17, 7–30 (2003). CASPubMed Google Scholar
Ny, T., Wahlberg, P. & Brandstrom, I. J. Matrix remodeling in the ovary: regulation and functional role of the plasminogen activator and matrix metalloproteinase systems. Mol. Cell Endocrinol.187, 29–38 (2002). CASPubMed Google Scholar
Hulboy, D. L., Rudolph, L. A. & Matrisian, L. M. Matrix metalloproteinases as mediators of reproductive function. Mol. Hum. Reprod.3, 27–45 (1997). CASPubMed Google Scholar
Vu, T. H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev.14, 2123–2133 (2000). CASPubMed Google Scholar
Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol.22, 51–86 (2002). CASPubMed Google Scholar
Luo, X. & Hofmann, K. The protease-associated domain: a homology domain associated with multiple classes of proteases. Trends Biochem. Sci.26, 147–148 (2001). CASPubMed Google Scholar
Llamazares, M., Cal, S., Quesada, V. & López-Otín, C. Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON-domain. J. Biol. Chem.278, 13382–13389 (2003). CASPubMed Google Scholar
Somerville, R. P. et al. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem.278, 9503–9513 (2003). CASPubMed Google Scholar
Hooper, J. D., Clements, J. A., Quigley, J. P. & Antalis, T. M. Type II transmembrane serine proteases: insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem.276, 857–860 (2001). CASPubMed Google Scholar
Velasco, G., Cal, S., Quesada, V., Sanchez, L. M. & Lopez-Otin, C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J. Biol. Chem.277, 37637–37646 (2002). CASPubMed Google Scholar
Wex, T., Wex, H. & Bromme, D. The human cathepsin F gene — a fusion product between an ancestral cathepsin and cystatin gene. Biol. Chem.380, 1439–1442 (1999). CASPubMed Google Scholar
Nagler, D. K., Sulea, T. & Menard, R. Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochem. Biophys. Res. Commun.257, 313–318 (1999). CASPubMed Google Scholar
McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science289, 1202–1206 (2000). CASPubMed Google Scholar
Tam, E. M., Wu, Y. I., Butler, G. S., Stack, M. S. & Overall, C. M. Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1–MMP) hemopexin C domain. The ectodomain of the 44-kDa autocatalytic product of MT1_–_MMP inhibits cell invasion by disrupting native type I collagen cleavage. J. Biol. Chem.277, 39005–39014 (2002). CASPubMed Google Scholar
Ehlers, M. R., Fox, E. A., Strydom, D. J. & Riordan, J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl Acad. Sci. USA86, 7741–7745 (1989). CASPubMedPubMed Central Google Scholar
Azuma, T., Liu, W. G., Vander Laan, D. J., Bowcock, A. M. & Taggart, R. T. Human gastric cathepsin E gene. Multiple transcripts result from alternative polyadenylation of the primary transcripts of a single gene locus at 1q31–q32. J. Biol. Chem.267, 1609–1614 (1992). CASPubMed Google Scholar
Freije, J. M. et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem.269, 16766–16773 (1994). CASPubMed Google Scholar
Heuze-Vourc'h, N., Leblond, V. & Courty, Y. Complex alternative splicing of the hKLK3 gene coding for the tumor marker PSA (prostate-specific-antigen). Eur. J. Biochem.270, 706–714 (2003). CASPubMed Google Scholar
Rieder, M. J., Taylor, S. L., Clark, A. G. & Nickerson, D. A. Sequence variation in the human angiotensin converting enzyme. Nature Genet.22, 59–62 (1999). CASPubMed Google Scholar
Williams, A. G. et al. The ACE gene and muscle performance. Nature403, 614 (2000). CASPubMed Google Scholar
Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature418, 426–430 (2002). Together with reference 74, this paper illustrates the increased susceptibility to common diseases that is associated with genetic variation in some protease genes. CASPubMed Google Scholar
Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet.26, 163–175 (2000). CASPubMed Google Scholar
Devlin, A. M. et al. Glutamate carboxypeptidase II: a polymorphism associated with lower levels of serum folate and hyperhomocysteinemia. Hum. Mol. Genet.9, 2837–2844 (2000). CASPubMed Google Scholar
Yamada, Y. et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N. Engl. J. Med.347, 1916–1923 (2002). CASPubMed Google Scholar
Murphy, G. et al. Matrix metalloproteinases in arthritic disease. Arthritis Res.4 (Suppl.) 39–49 (2002). Google Scholar
Yong, V. W., Power, C., Forsyth, P. & Edwards, D. R. Metalloproteinases in biology and pathology of the nervous system. Nature Rev. Neurosci.2, 502–511 (2001). CAS Google Scholar
Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol.3, 207–214 (2002). CAS Google Scholar
Parks, W. C. & Shapiro, S. D. Matrix metalloproteinases in lung biology. Respir. Res.2, 10–19 (2001). CASPubMed Google Scholar
Lomas, D. A. & Carrell, R. W. Serpinopathies and the conformational dementias. Nature Rev. Genet.3, 759–768 (2002). CASPubMed Google Scholar
Carrell, R. W. & Lomas, D. A. α1-antitrypsin deficiency — a model for conformational diseases. N. Engl. J. Med.346, 45–53 (2002). CASPubMed Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). CASPubMed Google Scholar
Hauri, H. P., Kappeler, F., Andersson, H. & Appenzeller, C. ERGIC-53 and traffic in the secretory pathway. J. Cell. Sci.113, 587–596 (2000). CASPubMed Google Scholar
Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet.25, 160–165 (2000). CASPubMed Google Scholar
Wang, J. et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell98, 47–58 (1999). CASPubMed Google Scholar
Boatright, K. M. et al. A unified model for apical caspase activation. Mol. Cell11, 529–541 (2003). CASPubMed Google Scholar
Huang, Y. & Wang, K. K. The calpain family and human disease. Trends Mol. Med.7, 355–362 (2001). CASPubMed Google Scholar
Levy, G. G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature413, 488–494 (2001). CASPubMed Google Scholar
Guipponi, M. et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum. Mol. Genet.11, 2829–2836 (2002). CASPubMed Google Scholar
Citron, M. et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med.3, 67–72 (1997). CASPubMed Google Scholar
Gehring, N. H. et al. Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nature Genet.28, 389–392 (2001). CASPubMed Google Scholar
De Jonghe, C. et al. Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer's disease by increased Aβ42 secretion. Hum. Mol. Genet.8, 1529–1540 (1999). CASPubMed Google Scholar
Molinari, F. et al. Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science298, 1779–1781 (2002). CASPubMed Google Scholar
Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell93, 973–983 (1998). CASPubMed Google Scholar
Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature419, 395–399 (2002). CASPubMed Google Scholar
Belaaouaj, A. et al. Mice lacking neutrophil elastase reveal impaired host defense against Gram negative bacterial sepsis. Nature Med.4, 615–618 (1998). CASPubMed Google Scholar
Horwitz, M., Benson, K. F., Person, R. E., Aprikyan, A. G. & Dale, D. C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nature Genet.23, 433–436 (1999). CASPubMed Google Scholar
Pendás, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet.31, 94–99 (2002). Together with references 101 and 102, this paper is an example of the usefulness of mouse models and genetic approaches to identify thein vivosubstrates of proteases. PubMed Google Scholar
Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell111, 635–646 (2002). CASPubMed Google Scholar
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). CASPubMed Google Scholar
Ranger, A. M., Malynn, B. A. & Korsmeyer, S. J. Mouse models of cell death. Nature Genet.28, 113–118 (2001). CASPubMed Google Scholar
Rakic, J. M. et al. Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol. Life Sci.60, 463–473 (2003). CASPubMed Google Scholar
Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J.18, 4645–4656 (1999). CASPubMedPubMed Central Google Scholar
Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nature Rev. Mol. Cell Biol.3, 932–943 (2002). CAS Google Scholar
Holmbeck, K. et al. MT1–MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell99, 81–92 (1999). CASPubMed Google Scholar
Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA97, 4052–4057 (2000). CASPubMedPubMed Central Google Scholar
Caterina, J. J. et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem.277, 49598–49604 (2002). CASPubMed Google Scholar
Coussens, L. M., Shapiro, S. D., Soloway, P. D. & Werb, Z. Models for gain-of-function and loss-of-function of MMPs: transgenic and gene targeted mice. Methods Mol. Biol.151, 149–179 (2001). CASPubMed Google Scholar
Wilson, S. M. et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature Genet.32, 420–425 (2002). An interesting example of a mouse disease that is caused by a mutation in a protease gene, the human orthologue of which has not yet been linked to an equivalent disorder. CASPubMed Google Scholar
Neuhold, L. A. et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest.107, 35–44 (2001). CASPubMedPubMed Central Google Scholar
Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nature Rev. Genet.2, 780–790 (2001). CASPubMed Google Scholar
Stanford, W. L., Cohn, J. B. & Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Rev. Genet.2, 756–768 (2001). CASPubMed Google Scholar
Southan, C. A genomic perspective on human proteases as drug targets. Drug Discov. Today6, 681–688 (2001). A discussion of the relevance of proteases as therapeutic targets. CASPubMed Google Scholar
Overall, C. M. & López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer2, 657–672 (2002). CAS Google Scholar
Soto, C. Protein misfolding and disease; protein refolding and therapy. FEBS Lett.498, 204–207 (2001). CASPubMed Google Scholar
Crowther, D. C. Familial conformational diseases and dementias. Hum. Mutat.20, 1–14 (2002). CASPubMed Google Scholar
Cushman, D. W. & Ondetti, M. A. Design of angiotensin converting enzyme inhibitors. Nature Med.5, 1110–1113 (1999). Together with reference 120, this article represents an example of the successful introduction of protease inhibitors to treat human disease. CASPubMed Google Scholar
Menendez-Arias, L. Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol. Sci.23, 381–388 (2002). CASPubMed Google Scholar
Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295, 2387–2392 (2002). An excellent analysis of the lack of success of most MMP inhibitors developed for treating cancer and discussion of alternatives for future improvement in this field. CASPubMed Google Scholar
Gomis-Ruth, F. X. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature389, 77–81 (1997). CASPubMed Google Scholar
Bode, W. & Huber, R. Structural basis of the endoproteinase-protein inhibitor interaction. Biochim. Biophys. Acta1477, 241–252 (2000). CASPubMed Google Scholar
Vendrell, J., Querol, E. & Aviles, F. X. Metallocarboxypeptidases and their protein inhibitors: structure, function and biomedical properties. Biochim. Biophys. Acta1477, 284–298 (2000). CASPubMed Google Scholar
Morgunova, E., Tuuttila, A., Bergmann, U. & Tryggvason, K. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl Acad. Sci. USA99, 7414–7419 (2002). CASPubMedPubMed Central Google Scholar
Turk, V., Turk, B. & Turk, D. Lysosomal cysteine proteases: facts and opportunities. EMBO J.20, 4629–4633 (2001). CASPubMedPubMed Central Google Scholar
Anel, R. L. & Kumar, A. Experimental and emerging therapies for sepsis and septic shock. Expert Opin. Investig. Drugs10, 1471–1485 (2001). CASPubMed Google Scholar
Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nature Rev. Genet.3, 954–966 (2002). A comprehensive review that discusses the successes and shortcomings of present strategies to treat inherited metabolic disorders. CASPubMed Google Scholar
Roth, D. A. et al. Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood98, 3600–3606 (2001). CASPubMed Google Scholar
Selkoe, D. J. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest.110, 1375–1381 (2002). CASPubMedPubMed Central Google Scholar
Kay, M. A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet.24, 257–261 (2000). CASPubMed Google Scholar
Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet.4, 20–28 (2003). An excellent analysis of the relevance of comparative genomics and discussion of the argument that gene loss might be an important mechanism of rapid evolutionary change. CASPubMed Google Scholar
Kheradmand, F. & Werb, Z. Shedding light on sheddases: role in growth and development. Bioessays24, 8–12 (2002). Together with reference 134, this review describes the functional relevance of the protease-mediated process of ectodomain shedding of membrane proteins. CASPubMed Google Scholar
Arribas, J. & Borroto, A. Protein ectodomain shedding. Chem. Rev.102, 4627–4638 (2002). CASPubMed Google Scholar
Rudner, D. Z., Fawcett, P. & Losick, R. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl Acad. Sci. USA96, 14765–14770 (1999). CASPubMedPubMed Central Google Scholar
Hoppe, T., Rape, M. & Jentsch, S. Membrane-bound transcription factors: regulated release by RIP or RUP. Curr. Opin. Cell Biol.13, 344–348 (2001). CASPubMed Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). An excellent analysis of the fascinating process that involves the participation of proteases that hydrolyze their substrates in the hydrophobic environment of the lipid bilayers. CASPubMed Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–730 (2002). CAS Google Scholar
McLysaght, A., Hokamp, K. & Wolfe, K. H. Extensive genomic duplication during early chordate evolution. Nature Genet.31, 200–204 (2002). CASPubMed Google Scholar
Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nature Rev. Genet.3, 65–72 (2002). CASPubMed Google Scholar
Ross, J., Jiang, H., Kanost, M. R. & Wang, Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene304, 117–131 (2003). CASPubMed Google Scholar
Lespinet, O., Wolf, Y. I., Koonin, E. V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res.12, 1048–1059 (2002). CASPubMedPubMed Central Google Scholar
Nardi, J. B., Martos, R., Walden, K. K., Lampe, D. J. & Robertson, H. M. Expression of lacunin, a large multidomain extracellular matrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. Insect Biochem. Mol. Biol.29, 883–897 (1999). CASPubMed Google Scholar