Mathematical multi-locus approaches to localizing complex human trait genes (original) (raw)

References

  1. Venter, C. Presentation given at the Annual Short Course in Medical and Experimental Mammalian Genetics in Bar Harbor, July 16–27, 2001.
  2. Templeton, A. R., Weiss, K. M., Nickerson, D. A., Boerwinkle, E. & Sing, C. F. Cladistic structure within the human lipoprotein lipase gene and its implications for phenotypic association studies. Genetics 156, 1259–1275 (2000).
    CAS PubMed PubMed Central Google Scholar
  3. Doerge, R. W. Mapping and analysis of quantitative trait loci in experimental populations. Nature Rev. Genet. 3, 43–52 (2002). A review of analysis methods for mapping quantitative trait loci (QTLs). Many of the methods can also be applied to other biological data sets for correlating quantitative phenotypes with genotypes.
    Article CAS Google Scholar
  4. Garrod, A. E. The incidence of alcaptonuria: a study in chemical individuality. Lancet II, 1616–1620 (1902).
    Article Google Scholar
  5. Morton, N. E. Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7, 277–318 (1955). The original paper proposing the lod score analysis for human linkage studies.
    CAS PubMed PubMed Central Google Scholar
  6. Elston, R. C. & Stewart, J. A general model for the analysis of pedigree data. Hum. Hered. 21, 523–542 (1971). The landmark paper describing what is known as the Elston–Stewart algorithm for the genetic analysis of large, extended pedigree data.
    Article CAS Google Scholar
  7. Ott, J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26, 588–597 (1974).
    CAS PubMed PubMed Central Google Scholar
  8. Ott, J. et al. Linkage studies in a large kindred with familial hypercholesterolemia. Am. J. Hum. Genet. 26, 598–603 (1974). The first application of the lod score method in a large human kindred allowing for age-dependent penetrance that led to identification of the gene that is responsible for familial hypercholesterolaemia.
    CAS PubMed PubMed Central Google Scholar
  9. Berg, K. & Heiberg, A. Linkage between familial hypercholesterolemia with xanthomatosis and the C3 polymorphism confirmed. Cytogenet. Cell. Genet. 22, 621–623 (1978).
    Article CAS Google Scholar
  10. Gusella, J. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).
    Article CAS Google Scholar
  11. Tsui, L. C. et al. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230, 1054–1057 (1985). This work, together with their 1989 paper in Science , represents the earliest triumph in genetic linkage analysis with DNA markers (restriction fragment length polymorphisms, RFLPs) followed by molecular positional cloning. It assigned the cystic fibrosis (CF) locus to the long arm of chromosome 7 (7q31) and identified the CF transmembrane regulator ( CFTR ) as the disease gene.
    Article CAS Google Scholar
  12. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001). The authors review all association studies conducted so far and discuss some crucial issues in study designs.
    Article CAS Google Scholar
  13. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet. 3, 299–309 (2002).
    Article CAS Google Scholar
  14. Génin, E., Todorov, A. A. and Clerget-Darpoux, F. Optimization of genome search strategies for homozygosity mapping: influence of marker spacing on power and threshold criteria for identification of candidate regions. Ann. Hum. Genet. 62, 419–429 (1998).
    Article Google Scholar
  15. Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).
    Article CAS Google Scholar
  16. Risch, N. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).
    Article CAS Google Scholar
  17. Bellman, R. Adaptive Control Processes: a Guided Tour (Princeton University Press, Princeton, 1961).
    Book Google Scholar
  18. Hoh, J. et al. Selecting SNPs in two-stage analysis of disease association data: a model-free approach. Ann. Hum. Genet. 64, 413–417 (2000).
    Article CAS Google Scholar
  19. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins University Press, Baltimore, USA, 1999).
    Google Scholar
  20. Hogben, L. The genetic analysis of familial traits. II. Double gene substitutions, with special reference to hereditary dwarfism. J. Genet. 25, 211–240 (1932).
    Article Google Scholar
  21. MacLean, C. J., Sham, P. C. & Kendler, K. S. Joint linkage of multiple loci for a complex disorder. Am. J. Hum. Genet. 53, 353–366 (1993).
    CAS PubMed PubMed Central Google Scholar
  22. Cox, N. J. et al. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nature Genet. 21, 213–215 (1999).
    Article CAS Google Scholar
  23. Schork, N. J., Boehnke, M., Terwilliger, J. D. & Ott, J. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am. J. Hum. Genet. 53, 1127–1136 (1993).
    CAS PubMed PubMed Central Google Scholar
  24. Knapp, M., Seuchter, S. A. & Baur, M. P. Two-locus disease models with two marker loci: the power of affected-sib-pair tests. Am. J. Hum. Genet. 55, 1030–1041 (1994).
    CAS PubMed PubMed Central Google Scholar
  25. Fan, R., Floros, J. & Xiong, M. Transmission disequilibrium test of two unlinked disease loci; application to respiratory distress syndrome. Adv. Appl. Stat. 1, 277–308 (2001).
    Google Scholar
  26. Dupuis, J., Brown, P. O. & Siegmund, D. Statistical methods for linkage analysis of complex traits from high-resolution maps of identity by descent. Genetics 140, 843–856 (1995). The first rigorous theoretical work that compares single-locus search, simultaneous search and conditional search for the mapping of a trait caused by two susceptibility genes.
    CAS PubMed PubMed Central Google Scholar
  27. Cordell, H. J., Wedig, G. C., Jacobs, K. B. & Elston, R. C. Multilocus linkage tests based on affected relative pairs. Am. J. Hum. Genet. 66, 1273–1286 (2000).
    Article CAS Google Scholar
  28. Cruickshanks, K. J. et al. Genetic marker associations with proliferative retinopathy in persons diagnosed with diabetes before 30 yr of age. Diabetes 41, 879–85 (1992).
    Article CAS Google Scholar
  29. Felsenfeld, S. & Plomin, R. Epidemiological and offspring analyses of developmental speech disorders using data from the Colorado Adoption Project. J. Speech Lang. Hear. Res. 40, 778–791 (1997).
    Article CAS Google Scholar
  30. Rao, C. R. & Wu, Y. in Model Selection (ed. Lahiri, P.) 1–57 (IMS Lecture Notes Monograph Series, Volume 38, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2001).
    Book Google Scholar
  31. Lucek, P. R. & Ott, J. Neural network analysis of complex traits. Genet. Epidemiol. 14, 1101–1106 (1997).
    Article CAS Google Scholar
  32. Lucek, P., Hanke, J., Reich, J., Solla, S. A. & Ott, J. Multi-locus nonparametric linkage analysis of complex trait loci with neural networks. Hum. Hered. 48, 275–284 (1998).
    Article CAS Google Scholar
  33. Diaconis, P. & Efron, B. Computer-intensive methods in statistics. Sci. Am. 248, 116–130 (1983).
    Article Google Scholar
  34. Zee, R. Y. et al. Multi-locus interactions predict risk for post-PTCA restenosis: an approach to the genetic analysis of common complex disease. Pharmacogenomics J. 2, 197–201 (2002).
    Article CAS Google Scholar
  35. Hoh, J., Wille, A. & Ott, J. Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res. 11, 2115–2119 (2001).
    Article CAS Google Scholar
  36. Nelson, M. R., Kardia, S. L., Ferrell, R. E. & Sing, C. F. A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res. 11, 458–470 (2001).
    Article CAS Google Scholar
  37. Ritchie, M. D. et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001).
    Article CAS Google Scholar
  38. Zhang, H., Tsai, C. P., Yu, C. Y. & Bonney, G. Tree-based linkage and association analyses of asthma. Genet. Epidemiol. 21, S317–S322 (2001).
    Article Google Scholar
  39. Zhang, H. & Singer, B. Recursive Partitioning in the Health Sciences (Springer, New York, 1999).
    Book Google Scholar
  40. Gabriel, S. B. et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nature Genet. 31, 89–93 (2002). This paper offers an innovative method that, for the first time, provides complete genetic dissection of a multifactorial disorder.
    Article CAS Google Scholar
  41. Bruning, J. C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).
    Article CAS Google Scholar
  42. Savage, D. B. et al. Digenic inheritance of severe insulin resistance in a human pedigree. Nature Genet. 31, 379–384 (2002).
    Article CAS Google Scholar
  43. Martin, M. P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genet. 31, 429–434 (2002).
    Article CAS Google Scholar
  44. Ming, J. E. & Muenke, M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am. J. Hum. Genet. 71, 1017–1032 (2002).
    Article CAS Google Scholar
  45. Agrawal, R., Imielinski, T. & Swami, A. in Proceedings of ACM SIGMOD Conference on Management of Data (eds Buneman, P. & Jajodia, S.) 207–216 (Association for Computing Machinery, Washington, USA, 1993).
    Google Scholar
  46. Agrawal, R. & Srikant, R. Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Databases [online], (cited 1 August 2003), <http://www.almaden.ibm.com/cs/people/ragrawal/papers/vldb94_rj.ps> (1994).
  47. Toivonen, H. T. et al. Data mining applied to linkage disequilibrium mapping. Am. J. Hum. Genet. 67, 133–145 (2000).
    Article CAS Google Scholar
  48. Flodman, P., Macula, A. J., Spence, M. A. & Torney, D. C. Preliminary implementation of new data mining techniques for the analysis of simulation data from Genetic Analysis Workshop 12: Problem 2. Genet. Epidemiol. 21, S390–S395 (2001).
    Article Google Scholar
  49. Czika, W. A. et al. Applying data mining techniques to the mapping of complex disease genes. Genet. Epidemiol. 21, S435–S440 (2001).
    Article Google Scholar
  50. Crama, Y., Hammer, P. L. & Ibaraki, T. Cause–effect relationships and partially defined Boolean functions. Ann. Oper. Res. 16, 299–326 (1988).
    Article Google Scholar
  51. Lauer, M. S. et al. Use of the logical analysis of data method for assessing long-term mortality risk after exercise electrocardiography. Circulation 106, 685–690 (2002).
    Article Google Scholar
  52. Frankel, W. N. & Schork, N. J. Who's afraid of epistasis? Nature Genet. 14, 371–373 (1996). In their comments on the two reports in the same issue of the journal, the authors predict that genetic epistasis is a common phenomenon for complex phenotypes despite only sparse evidence at the time.
    Article CAS Google Scholar
  53. Culverhouse, R., Suarez, B. K., Lin, J. & Reich, T. A perspective on epistasis: limits of models displaying no main effect. Am. J. Hum. Genet. 70, 461–471 (2002).
    Article Google Scholar
  54. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284 (2001).
    Article CAS Google Scholar
  55. Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375 (2003).
    Article CAS Google Scholar
  56. Lander, E. & Kruglyak, L. Genetic disseaction of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995). The authors formally address the multiple-testing problem in gene mapping and show how statistical significance can arise by chance alone due to a large number of tests performed. They provide rigorous genome-wide thresholds for testing significance based on the assumption of a dense marker map.
    Article CAS Google Scholar
  57. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall, New York, 1998).
    Google Scholar

Download references