The power and promise of population genomics: from genotyping to genome typing (original) (raw)

References

  1. Black, W. C., Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001). This article defines and lays the foundation for population genomics in terms of separating locus-specific effects versus genome-wide effects. It illustrates population-genomic concepts and principles through hypothetical examples and illustrations.
    CAS PubMed Google Scholar
  2. Gulcher, J. & Stefansson, K. Population genomics: laying the groundwork for genetic disease modelling and targeting. Clin. Chem. Lab. Med. 36, 523–527 (1998).
    CAS PubMed Google Scholar
  3. Goldstein, D. B. & Weale, M. E. Population genomics: linkage disequilibrium holds the key. Curr. Biol. 11, 576–579 (2001).
    Google Scholar
  4. Jorde, L. B., Watkins, W. S. & Bamshad, M. J. Population genomics: a bridge from evolutionary history to genetic medicine. Hum. Mol. Genet. 10, 2199–2207 (2001).
    CAS PubMed Google Scholar
  5. Gibson, G. & Mackay, T. F. C. Enabling population and quantitative genomics. Genet. Res. 80, 1–6 (2002).
    CAS PubMed Google Scholar
  6. Wilding, C. S., Butlin, R. K. & Grahame, J. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol. 14, 611–619 (2001). This article indicates that the F st -outlier-detection approach can work surprisingly well if applied to populations that span known selection gradients. It was the first to use AFLP markers, which is encouraging as these are the most readily available markers for genome-wide studies in non-model organisms. One particular strength of this study is the genotyping of replicate sets of populations that span the same kind of selection gradient in different distant geographic locations.
    CAS Google Scholar
  7. Albertson, R. C., Markert, J. A., Danley, P. D. & Kocher, T. D. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc. Natl Acad. Sci. USA 96, 5107–5110 (1999).
    CAS PubMed PubMed Central Google Scholar
  8. Hoh, J. & Ott, J. Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet. 4, 701–709 (2003).
    CAS PubMed Google Scholar
  9. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597 (2003).
    CAS PubMed Google Scholar
  10. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).
    CAS PubMed Google Scholar
  11. Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet. 4, 99–111 (2003).
    CAS PubMed Google Scholar
  12. Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).
    CAS PubMed Google Scholar
  13. Schlötterer, C. A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160, 753–763 (2002).
    PubMed PubMed Central Google Scholar
  14. Schlötterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003).
    PubMed Google Scholar
  15. Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731 (1999).
    CAS PubMed PubMed Central Google Scholar
  16. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS PubMed PubMed Central Google Scholar
  17. Hardy, O. J. & Vekemans, X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Google Scholar
  18. Manel, S., Schwartz, M., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197 (2003). This article summarizes the statistical approaches that are available for relating spatial variation in population-genetic patterns to spatial variation in environmental patterns, This article and the population-genomic concepts discussed here show the feasibility of a 'landscape genomic' approach using association studies between the genome and environments.
    Google Scholar
  19. Waples, R. S. Genetic methods for estimating the effective size of cetacean populations. Report of the International Whaling Commission (Special Issue) 13, 279–300 (1991).
    Google Scholar
  20. Yang, Z. Likelihood and Bayes estimation of ancestral population size in hominoids using data from multiple loci. Genetics 162, 1811–1823 (2002).
    PubMed PubMed Central Google Scholar
  21. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defining haplotype patterns in mouse. Proc. Natl Acad. Sci. USA 100, 3380–3385 (2003).
    CAS PubMed PubMed Central Google Scholar
  22. Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, Princeton, New Jersey, 1986).
    Google Scholar
  23. Conner, J. K. How strong in natural selection? Trends Ecol. Evol. 5, 215–217 (2001).
    Google Scholar
  24. Ungerer, M. C., Linder, C. R. & Rieseberg, L. H. Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana. Genetics 163, 277–286 (2003).
    CAS PubMed PubMed Central Google Scholar
  25. Olson, S. Seeking the signs of selection. Science 298, 1324–1325 (2002).
    CAS PubMed Google Scholar
  26. Storz, J. F. & Nachman, M. W. Natural selection on protein polymorphism in the rodent genus Peromyscus: evidence from interlocus contrasts. Evolution (in the press). This paper quantifies the potential effects of outlier loci on parameter estimation. The authors suggest that outlier loci are rare within data sets but are fairly common across data sets. They also show that the same loci are often outliers across independent data sets (support for selection as the cause of outlier behaviour).
  27. Fay, J. C., Wyckoff, G. J. & Wu, C -I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002).
    CAS PubMed Google Scholar
  28. Taberlet, P., Waits, L. P. & Luikart, G. Noninvasive genetic sampling: look before you leap. Trends Ecol. Evol. 14, 321–325 (1999).
    Google Scholar
  29. Flint, J. et al. Minisatellite mutational processes reduce F-st estimates. Hum. Genet. 105, 567–576 (1999).
    CAS PubMed Google Scholar
  30. Sunnucks, P. Efficient genetic markers for population biology. Trends Ecol. Evol. 15, 199–203 (2000).
    CAS PubMed Google Scholar
  31. Ewens, W. J. The sampling theory of selectively neutral alleles. Theoret. Popul. Genet. 3, 87–112 (1972).
    CAS Google Scholar
  32. Watterson, G. A. The homozygosity test of neutrality. Genetics 88, 405–417 (1978).
    CAS PubMed PubMed Central Google Scholar
  33. Hedrick, P. W. in Genetics, Demography, and Viability of Fragmented Populations (eds Young, A. & Clarke, G.) 113–125 (Cambridge Univ. Press, Cambridge, UK, 2000).
    Google Scholar
  34. Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996). This paper improves and largely revives the Lewontin and Krakauer F st -outlier approach (reference 38) as a viable method for detecting loci that are candidate selected/adaptive. Real and simulated data (from non-equilibrium populations and various migration patterns) indicate that outliers can be reliably detected. A software program is made freely available to conduct the F st -outlier tests.
    Google Scholar
  35. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002). This study describes the most extensive genome-wide sampling that has been done so far, which provides empirical distributions of F st for different genome regions (X chromosome, exons, introns and non-coding regions).
    CAS PubMed PubMed Central Google Scholar
  36. Payseur, B. A., Cutter, A. D. & Nachman, M. W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol. Biol. Evol. 7, 1143–1153 (2002).
    Google Scholar
  37. Storz, J. F. & Beaumont, M. A. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154–166 (2002). The first extension of the single-locus homozygosity-excess test (by Ewens–Watterson, references 31 and 32) for use in a genome-wide approach.
    CAS PubMed Google Scholar
  38. Lewontin, R. C. & Krakauer, J. K. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).
    CAS PubMed PubMed Central Google Scholar
  39. Vitalis, R., Dawson, K. & Boursot, P. Interpretation of variation across marker loci as evidence of selection. Genetics 158, 1811–1823 (2001).
    CAS PubMed PubMed Central Google Scholar
  40. Baer, C. F. Among-locus variation in Fst: fish, allozymes and the Lewontin–Krakauer test revisited. Genetics 152, 653–659 (1999).
    CAS PubMed PubMed Central Google Scholar
  41. Arnaud-Haond, S., Bonhomme, F. & Blanc, F. Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margeritifera. J. Evol. Biol. 16, 388–398 (2003).
    CAS PubMed Google Scholar
  42. Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).
    PubMed PubMed Central Google Scholar
  43. Landry, P. A., Koskinen, M. T. & Primmer, C. R. Deriving evolutionary relationships among populations using microsatellites and (δ-μ)2: all loci are equal, but some are more equal than others. Genetics 161, 1339–1347 (2002).
    PubMed PubMed Central Google Scholar
  44. Allendorf, F. W. & Seeb, L. W. Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54, 640–651 (2000). This article indicates that outlier loci, although rare within data sets, might be common across large data sets, and that outliers occur with any type of molecular marker. It emphasizes that it is more important to genotype many markers (and test for outliers) than to use a certain marker type when computing population-genetic parameters.
    CAS PubMed Google Scholar
  45. Pogson, G. H., Mesa, K. A. & Boutilier, R. G. Genetic population structure and gene flow in the Atlantic cod: a comparison of allozyme and nuclear RFLP loci. Genetics 139, 375–385 (1995).
    CAS PubMed PubMed Central Google Scholar
  46. Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).
    CAS PubMed Google Scholar
  47. Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analysis in whole-genome association studies in humans. Nature Genet 33, 518–521 (2003).
    CAS PubMed Google Scholar
  48. Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST ≠ (4Nm + 1). Heredity 82, 117–125 (1999).
    PubMed Google Scholar
  49. Nachman, M. W. Single nucleotide polymorphism and recombination rate in humans. Trends Genet. 17, 481–485 (2001).
    CAS PubMed Google Scholar
  50. Hughes, A. L. Adaptive Evolution of Genes and Genomes (Oxford Univ. Press, New York and Oxford, 1999).
    Google Scholar
  51. Wu, C -I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).
    Google Scholar
  52. Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254 (2002).
    PubMed Google Scholar
  53. Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS PubMed Google Scholar
  54. Vrijenhoek, R. C. & Leberg, L. P. Let's not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Cons. Biol. 5, 252–253 (1991).
    Google Scholar
  55. Lacy, R. C. Should we select genetic alleles in our conservation breeding programs? Zoo Biol. 19, 279–282 (2000).
    Google Scholar
  56. Wilson, E. O. The encyclopaedia of life. Trends Ecol. Evol. 18, 77–80 (2003).
    Google Scholar
  57. Ronquist, F. & Gardenfors, U. Taxonomy and biodiversity inventories: time to deliver. Trends Ecol. Evol. 18, 269–270 (2003).
    Google Scholar
  58. Baker, S. C., Dalebout, M. L., Lavery, S. & Ross, H. A. DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends Ecol. Evol. 18, 271–272 (2003).
    Google Scholar
  59. Blaxter, M. & Floyd, R. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol. Evol. 18, 268–269 (2003).
    Google Scholar
  60. DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524 (2002).
    PubMed Google Scholar
  61. Kohn, M. H. et al. Locus-specific genetic differentiation among warfarin resistant rat populations. Genetics 164, 1055–1070 (2003).
    CAS PubMed PubMed Central Google Scholar
  62. Kohn, M. H., Pelz, H -J. & Wayne, R. K. Natural selection mapping of the warfarin-resistance gene. Proc. Natl Acad. Sci. USA 97, 7911–7915 (2000).
    CAS PubMed PubMed Central Google Scholar
  63. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure II. Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
    CAS PubMed PubMed Central Google Scholar
  64. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
    CAS PubMed PubMed Central Google Scholar
  65. Jaccoud, D., Peng, K., Feinstein, D. & Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, 25 (2001). This paper described the DArT approach, which promises to increase the number of RFLP-like markers that can be genotyped in a single PCR by an order of magnitude. The technique uses microarray hybridization, which increases speed and reduces cost.
    Google Scholar
  66. Young, W. P., Schupp, J. M. & Keim, P. DNA methylation and AFLP marker distribution in soybean. Theor. Appl. Genet. 99, 785–792 (1999).
    CAS Google Scholar
  67. Lindner, K. R. et al. Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome 43, 538–549 (2000).
    CAS PubMed Google Scholar
  68. Skot, L., Sackville, H., Mizen, S., Chorlton, K. H. & Thomas, I. D. Molecular genecology of temperature response in Lolium perenne. 2. association of AFLP markers with ecogeography. Mol. Ecol. 11, 1865–1875 (2002).
    CAS PubMed Google Scholar
  69. Wang, Z., Baker, A. J., Hill, G. & Edwards, S. V. Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution (in the press).
  70. van der Wurff, A., Chan, Y., van Straalen, N. & Schouten, J. TE–AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res. 28, 105 (2000).
    Google Scholar
  71. van Tienderen, P., de Haan, A., van der Linden, C . & Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol. 17, 577–582 (2002). Gene-targeted AFLP and other methods for identifying adaptive genes (mainly in agricultural species) are described in this paper.
    Google Scholar
  72. Waugh, R. et al. Genetic distribution of _Bare-1_-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687–694 (1997).
    CAS PubMed Google Scholar
  73. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).
    CAS PubMed PubMed Central Google Scholar
  74. Batley, J., Barker, G., O'Sullivan, H., Edwards, K. J. & Edwards, D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tags. Plant Physiol. 132, 84–91 (2003).
    CAS PubMed PubMed Central Google Scholar
  75. Davey, G. C., Caplice, N. C., Martin, S. A. & Powell, R. A survey of genes expressed in the Atlantic salmon as identified by expressed sequence tags. Gene 363, 121–130 (2001).
    Google Scholar
  76. Everitt, R. et al. RED: the analysis, management of and dissemination of expressed sequence tags. Bioinformatics 18, 1692–1693 (2002).
    CAS PubMed Google Scholar
  77. Chen, J. W. et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10, 549–557 (2000).
    CAS PubMed PubMed Central Google Scholar
  78. Kennedy, G. et al. Large-scale genotyping of complex DNA. Nature Biotechnol. 2, 1233–1237 (2003).
    Google Scholar
  79. Kuhner, M. K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156, 439–447 (2000).
    CAS PubMed PubMed Central Google Scholar
  80. Wakeley, J., Nielsen, R., Liu-Cordero, S. N. & Ardlie, K. The discovery of single-nucleotide polymorphisms — and inferences about human demographic history. J. Hum. Genet. 69, 1332–1347 (2001).
    CAS Google Scholar
  81. Brumfield, R. T., Beerli, P., Nickerson, D. A. & Edwards, S. V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18, 249–256 (2003).
    Google Scholar
  82. Akey, et al. The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol. Biol. Evol. 20, 232–242 (2003).
    CAS PubMed Google Scholar
  83. Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).
    PubMed Google Scholar
  84. Clark, A. et al. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. Am. J. Hum. Genet. 73, 285–300 (2003).
    CAS PubMed PubMed Central Google Scholar
  85. Schmid, K. et al. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res. 13,1250–1257 (2003).
    PubMed PubMed Central Google Scholar
  86. Paetkau, D., Slade, R., Burden, M. & Estoup, A. Direct, real-time estimation of migration rates using assignment methods: a simulation-based exploration of accuracy and power. Mol. Ecol. (in the press).
  87. Banks, M. A., Eichert, W. & Olsen, J. B. Which genetic loci have greater population assignment power? Bioinformatics 19, 1436–1438 (2003).
    CAS PubMed Google Scholar
  88. Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000 (1999).
    CAS PubMed PubMed Central Google Scholar
  89. Manel, S., Berthier, P. & Luikart, G. Detecting wildlife poaching: identifying the origin of individuals using Bayesian assignment tests and multi-locus genotypes. Cons. Biol. 16, 650–657 (2002).
    Google Scholar
  90. Maudet, C. & Taberlet, P. Holstein's milk detection in cheeses inferred from melanocortin receptor 1 (MC1R) gene polymorphism. J. Dairy Sci. 85, 707–715 (2002).
    CAS PubMed Google Scholar
  91. Pletcher, S. D. & Stumpf P. H. Population genomics: ageing by association. Curr. Biol. 12, 328–330 (2002). This study is an example of how genes cause similar fitness effects in different taxa (humans and mice). This indicates that genes with known adaptive/fitness effects from one species can be used in another species as 'strong candidate genes' in population-genomics association studies.
    Google Scholar
  92. Yeh, F. C., Yang, R -C., Boyle, T. B. J., Ye, Z -H. & Mao, J. X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. [online], (cited 20 October 2003), <http://www.ualberta.ca/~fyeh/faq.htm> (1997).
  93. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics 131, 479–491 (1992).
    CAS PubMed PubMed Central Google Scholar
  94. Lancaster, A., Nelson, M. P., Single, R. M., Meyer, D. & Thomson, G. in Pac. Symp. Biocomput. 2003 (eds Altman, R. B. et al.) 514–525 (World Scientific, Singapore, 2002).
    Google Scholar
  95. Cooper, G. et al. An empirical estimate of the δ-μ genetic distance for 213 human microsatellite markers. Am. J. Hum. Genet. 6, 1125–1133 (1999).
    Google Scholar

Download references