The power and promise of population genomics: from genotyping to genome typing (original) (raw)
References
Black, W. C., Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol.46, 441–469 (2001). This article defines and lays the foundation for population genomics in terms of separating locus-specific effects versus genome-wide effects. It illustrates population-genomic concepts and principles through hypothetical examples and illustrations. CASPubMed Google Scholar
Gulcher, J. & Stefansson, K. Population genomics: laying the groundwork for genetic disease modelling and targeting. Clin. Chem. Lab. Med.36, 523–527 (1998). CASPubMed Google Scholar
Goldstein, D. B. & Weale, M. E. Population genomics: linkage disequilibrium holds the key. Curr. Biol.11, 576–579 (2001). Google Scholar
Jorde, L. B., Watkins, W. S. & Bamshad, M. J. Population genomics: a bridge from evolutionary history to genetic medicine. Hum. Mol. Genet.10, 2199–2207 (2001). CASPubMed Google Scholar
Gibson, G. & Mackay, T. F. C. Enabling population and quantitative genomics. Genet. Res.80, 1–6 (2002). CASPubMed Google Scholar
Wilding, C. S., Butlin, R. K. & Grahame, J. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol.14, 611–619 (2001). This article indicates that theFst-outlier-detection approach can work surprisingly well if applied to populations that span known selection gradients. It was the first to use AFLP markers, which is encouraging as these are the most readily available markers for genome-wide studies in non-model organisms. One particular strength of this study is the genotyping of replicate sets of populations that span the same kind of selection gradient in different distant geographic locations. CAS Google Scholar
Albertson, R. C., Markert, J. A., Danley, P. D. & Kocher, T. D. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc. Natl Acad. Sci. USA96, 5107–5110 (1999). CASPubMedPubMed Central Google Scholar
Hoh, J. & Ott, J. Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet.4, 701–709 (2003). CASPubMed Google Scholar
Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet.4, 587–597 (2003). CASPubMed Google Scholar
Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet.2, 91–99 (2001). CASPubMed Google Scholar
Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet.4, 99–111 (2003). CASPubMed Google Scholar
Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity86, 641–647 (2001). CASPubMed Google Scholar
Schlötterer, C. A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics160, 753–763 (2002). PubMedPubMed Central Google Scholar
Schlötterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet.19, 32–38 (2003). PubMed Google Scholar
Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res.9, 720–731 (1999). CASPubMedPubMed Central Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics155, 945–959 (2000). CASPubMedPubMed Central Google Scholar
Hardy, O. J. & Vekemans, X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes2, 618–620 (2002). Google Scholar
Manel, S., Schwartz, M., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol.18, 189–197 (2003). This article summarizes the statistical approaches that are available for relating spatial variation in population-genetic patterns to spatial variation in environmental patterns, This article and the population-genomic concepts discussed here show the feasibility of a 'landscape genomic' approach using association studies between the genome and environments. Google Scholar
Waples, R. S. Genetic methods for estimating the effective size of cetacean populations. Report of the International Whaling Commission (Special Issue)13, 279–300 (1991). Google Scholar
Yang, Z. Likelihood and Bayes estimation of ancestral population size in hominoids using data from multiple loci. Genetics162, 1811–1823 (2002). PubMedPubMed Central Google Scholar
Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defining haplotype patterns in mouse. Proc. Natl Acad. Sci. USA100, 3380–3385 (2003). CASPubMedPubMed Central Google Scholar
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, Princeton, New Jersey, 1986). Google Scholar
Conner, J. K. How strong in natural selection? Trends Ecol. Evol.5, 215–217 (2001). Google Scholar
Ungerer, M. C., Linder, C. R. & Rieseberg, L. H. Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana. Genetics163, 277–286 (2003). CASPubMedPubMed Central Google Scholar
Olson, S. Seeking the signs of selection. Science298, 1324–1325 (2002). CASPubMed Google Scholar
Storz, J. F. & Nachman, M. W. Natural selection on protein polymorphism in the rodent genus Peromyscus: evidence from interlocus contrasts. Evolution (in the press). This paper quantifies the potential effects of outlier loci on parameter estimation. The authors suggest that outlier loci are rare within data sets but are fairly common across data sets. They also show that the same loci are often outliers across independent data sets (support for selection as the cause of outlier behaviour).
Fay, J. C., Wyckoff, G. J. & Wu, C -I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature415, 1024–1026 (2002). CASPubMed Google Scholar
Taberlet, P., Waits, L. P. & Luikart, G. Noninvasive genetic sampling: look before you leap. Trends Ecol. Evol.14, 321–325 (1999). Google Scholar
Flint, J. et al. Minisatellite mutational processes reduce F-st estimates. Hum. Genet.105, 567–576 (1999). CASPubMed Google Scholar
Sunnucks, P. Efficient genetic markers for population biology. Trends Ecol. Evol.15, 199–203 (2000). CASPubMed Google Scholar
Ewens, W. J. The sampling theory of selectively neutral alleles. Theoret. Popul. Genet.3, 87–112 (1972). CAS Google Scholar
Hedrick, P. W. in Genetics, Demography, and Viability of Fragmented Populations (eds Young, A. & Clarke, G.) 113–125 (Cambridge Univ. Press, Cambridge, UK, 2000). Google Scholar
Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B263, 1619–1626 (1996). This paper improves and largely revives the Lewontin and KrakauerFst-outlier approach (reference 38) as a viable method for detecting loci that are candidate selected/adaptive. Real and simulated data (from non-equilibrium populations and various migration patterns) indicate that outliers can be reliably detected. A software program is made freely available to conduct theFst-outlier tests. Google Scholar
Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res.12, 1805–1814 (2002). This study describes the most extensive genome-wide sampling that has been done so far, which provides empirical distributions ofFstfor different genome regions (X chromosome, exons, introns and non-coding regions). CASPubMedPubMed Central Google Scholar
Payseur, B. A., Cutter, A. D. & Nachman, M. W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol. Biol. Evol.7, 1143–1153 (2002). Google Scholar
Storz, J. F. & Beaumont, M. A. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution56, 154–166 (2002). The first extension of the single-locus homozygosity-excess test (by Ewens–Watterson, references 31 and 32) for use in a genome-wide approach. CASPubMed Google Scholar
Lewontin, R. C. & Krakauer, J. K. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics74, 175–195 (1973). CASPubMedPubMed Central Google Scholar
Vitalis, R., Dawson, K. & Boursot, P. Interpretation of variation across marker loci as evidence of selection. Genetics158, 1811–1823 (2001). CASPubMedPubMed Central Google Scholar
Baer, C. F. Among-locus variation in Fst: fish, allozymes and the Lewontin–Krakauer test revisited. Genetics152, 653–659 (1999). CASPubMedPubMed Central Google Scholar
Arnaud-Haond, S., Bonhomme, F. & Blanc, F. Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margeritifera. J. Evol. Biol.16, 388–398 (2003). CASPubMed Google Scholar
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics162, 2025–2035 (2002). PubMedPubMed Central Google Scholar
Landry, P. A., Koskinen, M. T. & Primmer, C. R. Deriving evolutionary relationships among populations using microsatellites and (δ-μ)2: all loci are equal, but some are more equal than others. Genetics161, 1339–1347 (2002). PubMedPubMed Central Google Scholar
Allendorf, F. W. & Seeb, L. W. Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution54, 640–651 (2000). This article indicates that outlier loci, although rare within data sets, might be common across large data sets, and that outliers occur with any type of molecular marker. It emphasizes that it is more important to genotype many markers (and test for outliers) than to use a certain marker type when computing population-genetic parameters. CASPubMed Google Scholar
Pogson, G. H., Mesa, K. A. & Boutilier, R. G. Genetic population structure and gene flow in the Atlantic cod: a comparison of allozyme and nuclear RFLP loci. Genetics139, 375–385 (1995). CASPubMedPubMed Central Google Scholar
Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature411, 199–204 (2001). CASPubMed Google Scholar
Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analysis in whole-genome association studies in humans. Nature Genet33, 518–521 (2003). CASPubMed Google Scholar
Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST ≠ (4Nm + 1). Heredity82, 117–125 (1999). PubMed Google Scholar
Nachman, M. W. Single nucleotide polymorphism and recombination rate in humans. Trends Genet.17, 481–485 (2001). CASPubMed Google Scholar
Hughes, A. L. Adaptive Evolution of Genes and Genomes (Oxford Univ. Press, New York and Oxford, 1999). Google Scholar
Wu, C -I. The genic view of the process of speciation. J. Evol. Biol.14, 851–865 (2001). Google Scholar
Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol.51, 238–254 (2002). PubMed Google Scholar
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol.15, 290–295 (2000). CASPubMed Google Scholar
Vrijenhoek, R. C. & Leberg, L. P. Let's not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Cons. Biol.5, 252–253 (1991). Google Scholar
Lacy, R. C. Should we select genetic alleles in our conservation breeding programs? Zoo Biol.19, 279–282 (2000). Google Scholar
Wilson, E. O. The encyclopaedia of life. Trends Ecol. Evol.18, 77–80 (2003). Google Scholar
Ronquist, F. & Gardenfors, U. Taxonomy and biodiversity inventories: time to deliver. Trends Ecol. Evol.18, 269–270 (2003). Google Scholar
Baker, S. C., Dalebout, M. L., Lavery, S. & Ross, H. A. DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends Ecol. Evol.18, 271–272 (2003). Google Scholar
Blaxter, M. & Floyd, R. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol. Evol.18, 268–269 (2003). Google Scholar
DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol.5, 520–524 (2002). PubMed Google Scholar
Kohn, M. H. et al. Locus-specific genetic differentiation among warfarin resistant rat populations. Genetics164, 1055–1070 (2003). CASPubMedPubMed Central Google Scholar
Kohn, M. H., Pelz, H -J. & Wayne, R. K. Natural selection mapping of the warfarin-resistance gene. Proc. Natl Acad. Sci. USA97, 7911–7915 (2000). CASPubMedPubMed Central Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure II. Linked loci and correlated allele frequencies. Genetics164, 1567–1587 (2003). CASPubMedPubMed Central Google Scholar
Jaccoud, D., Peng, K., Feinstein, D. & Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res.29, 25 (2001). This paper described the DArT approach, which promises to increase the number of RFLP-like markers that can be genotyped in a single PCR by an order of magnitude. The technique uses microarray hybridization, which increases speed and reduces cost. Google Scholar
Young, W. P., Schupp, J. M. & Keim, P. DNA methylation and AFLP marker distribution in soybean. Theor. Appl. Genet.99, 785–792 (1999). CAS Google Scholar
Lindner, K. R. et al. Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome43, 538–549 (2000). CASPubMed Google Scholar
Skot, L., Sackville, H., Mizen, S., Chorlton, K. H. & Thomas, I. D. Molecular genecology of temperature response in Lolium perenne. 2. association of AFLP markers with ecogeography. Mol. Ecol.11, 1865–1875 (2002). CASPubMed Google Scholar
Wang, Z., Baker, A. J., Hill, G. & Edwards, S. V. Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution (in the press).
van der Wurff, A., Chan, Y., van Straalen, N. & Schouten, J. TE–AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res.28, 105 (2000). Google Scholar
van Tienderen, P., de Haan, A., van der Linden, C . & Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol.17, 577–582 (2002). Gene-targeted AFLP and other methods for identifying adaptive genes (mainly in agricultural species) are described in this paper. Google Scholar
Waugh, R. et al. Genetic distribution of _Bare-1_-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet.253, 687–694 (1997). CASPubMed Google Scholar
Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res.30, 3894–3900 (2002). CASPubMedPubMed Central Google Scholar
Batley, J., Barker, G., O'Sullivan, H., Edwards, K. J. & Edwards, D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tags. Plant Physiol.132, 84–91 (2003). CASPubMedPubMed Central Google Scholar
Davey, G. C., Caplice, N. C., Martin, S. A. & Powell, R. A survey of genes expressed in the Atlantic salmon as identified by expressed sequence tags. Gene363, 121–130 (2001). Google Scholar
Everitt, R. et al. RED: the analysis, management of and dissemination of expressed sequence tags. Bioinformatics18, 1692–1693 (2002). CASPubMed Google Scholar
Chen, J. W. et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res.10, 549–557 (2000). CASPubMedPubMed Central Google Scholar
Kennedy, G. et al. Large-scale genotyping of complex DNA. Nature Biotechnol.2, 1233–1237 (2003). Google Scholar
Kuhner, M. K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics156, 439–447 (2000). CASPubMedPubMed Central Google Scholar
Wakeley, J., Nielsen, R., Liu-Cordero, S. N. & Ardlie, K. The discovery of single-nucleotide polymorphisms — and inferences about human demographic history. J. Hum. Genet.69, 1332–1347 (2001). CAS Google Scholar
Brumfield, R. T., Beerli, P., Nickerson, D. A. & Edwards, S. V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol.18, 249–256 (2003). Google Scholar
Akey, et al. The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol. Biol. Evol.20, 232–242 (2003). CASPubMed Google Scholar
Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol.63, 245–255 (2003). PubMed Google Scholar
Clark, A. et al. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. Am. J. Hum. Genet.73, 285–300 (2003). CASPubMedPubMed Central Google Scholar
Schmid, K. et al. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res.13,1250–1257 (2003). PubMedPubMed Central Google Scholar
Paetkau, D., Slade, R., Burden, M. & Estoup, A. Direct, real-time estimation of migration rates using assignment methods: a simulation-based exploration of accuracy and power. Mol. Ecol. (in the press).
Banks, M. A., Eichert, W. & Olsen, J. B. Which genetic loci have greater population assignment power? Bioinformatics19, 1436–1438 (2003). CASPubMed Google Scholar
Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics153, 1989–2000 (1999). CASPubMedPubMed Central Google Scholar
Manel, S., Berthier, P. & Luikart, G. Detecting wildlife poaching: identifying the origin of individuals using Bayesian assignment tests and multi-locus genotypes. Cons. Biol.16, 650–657 (2002). Google Scholar
Maudet, C. & Taberlet, P. Holstein's milk detection in cheeses inferred from melanocortin receptor 1 (MC1R) gene polymorphism. J. Dairy Sci.85, 707–715 (2002). CASPubMed Google Scholar
Pletcher, S. D. & Stumpf P. H. Population genomics: ageing by association. Curr. Biol.12, 328–330 (2002). This study is an example of how genes cause similar fitness effects in different taxa (humans and mice). This indicates that genes with known adaptive/fitness effects from one species can be used in another species as 'strong candidate genes' in population-genomics association studies. Google Scholar
Yeh, F. C., Yang, R -C., Boyle, T. B. J., Ye, Z -H. & Mao, J. X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. [online], (cited 20 October 2003), <http://www.ualberta.ca/~fyeh/faq.htm> (1997).
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics131, 479–491 (1992). CASPubMedPubMed Central Google Scholar
Lancaster, A., Nelson, M. P., Single, R. M., Meyer, D. & Thomson, G. in Pac. Symp. Biocomput. 2003 (eds Altman, R. B. et al.) 514–525 (World Scientific, Singapore, 2002). Google Scholar
Cooper, G. et al. An empirical estimate of the δ-μ genetic distance for 213 human microsatellite markers. Am. J. Hum. Genet.6, 1125–1133 (1999). Google Scholar