Comparative genomics at the vertebrate extremes (original) (raw)
Homer . The Odissey Ch. 12 (Signet Classic, New York, 1999). Google Scholar
Nobrega, M. A. & Pennacchio, L. A. Comparative genomic analysis as a tool for biological discovery. J. Physiol.554, 31–39 (2004). CASPubMed Google Scholar
Pennacchio, L. A. & Rubin, E. M. Comparative genomic tools and databases: providing insights into the human genome. J. Clin. Invest.111, 1099–1106 (2003). CASPubMedPubMed Central Google Scholar
Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science288, 136–140 (2000). CASPubMed Google Scholar
Pennacchio, L. A. et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science294, 169–173 (2001). CASPubMed Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). Paradigmatic example of the power of comparisons of multiple, related genomes to identify functional sequence in a genome. CASPubMed Google Scholar
Thomas, J. W. et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature424, 788–793 (2003). CASPubMed Google Scholar
Boffelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science299, 1391–1394 (2003). The first paper to describe the use of comparisons of multiple, closely related primates to identify primate-specific conserved sequences. CASPubMed Google Scholar
Hardison, R. C. et al. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res.13, 13–26 (2003). CASPubMedPubMed Central Google Scholar
Pennacchio, L. A., Baroukh, N. & Rubin, E. M. in Symposia on Quantitative Biology: The Genome of Homo sapiens (Cold Spring Harbor Press, Cold Spring Harbor, in the press).
Brenner, S. et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature366, 265–268 (1993). CASPubMed Google Scholar
Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science297, 1301–1310 (2002). CASPubMed Google Scholar
Arnone, M. I. & Davidson, E. H. The hardwiring of development: organization and function of genomic regulatory systems. Development124, 1851–1864 (1997). CASPubMed Google Scholar
Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc. Natl Acad. Sci. USA92, 1684–1688 (1995). Demonstrates that human–F. rubripescomparisons detect conserved non-coding sequences that, once tested inin vivoassays, correspond to enhancers. CASPubMedPubMed Central Google Scholar
Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science302, 413 (2003). CASPubMed Google Scholar
Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet.12, 1725–1735 (2003). Demonstrates that sequence variation incis-regulatory elements at near-megabase distances can result in phenotypic variation. CASPubMed Google Scholar
Kleinjan, D. J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet.7, 1611–1618 (1998). CASPubMed Google Scholar
de Kok, Y. J. et al. Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Hum. Mol. Genet.5, 1229–1235 (1996). CASPubMed Google Scholar
Zerucha, T. et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J. Neurosci.20, 709–721 (2000). CASPubMedPubMed Central Google Scholar
Blader, P., Plessy, C. & Strahle, U. Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mech. Dev.120, 211–218 (2003). CASPubMed Google Scholar
Dickmeis, T. et al. Expression profiling and comparative genomics identify a conserved regulatory region controlling midline expression in the zebrafish embryo. Genome Res.14, 228–238 (2004). CASPubMedPubMed Central Google Scholar
Goode, D. K., Snell, P. K. & Elgar, G. K. Comparative analysis of vertebrate Shh genes identifies novel conserved non-coding sequence. Mamm. Genome14, 192–201 (2003). CASPubMed Google Scholar
Kimura-Yoshida, C. et al. Characterization of the pufferfish _Otx2 cis_-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development131, 57–71 (2004). CASPubMed Google Scholar
Barton, L. M. et al. Regulation of the stem cell leukemia (SCL) gene: a tale of two fishes. Proc. Natl Acad. Sci. USA98, 6747–6752 (2001). CASPubMedPubMed Central Google Scholar
Lien, C. L., McAnally, J., Richardson, J. A. & Olson, E. N. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol.244, 257–266 (2002). CASPubMed Google Scholar
Ghanem, N. et al. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res.13, 533–543 (2003). CASPubMedPubMed Central Google Scholar
Sharpe, J. et al. Identification of Sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Curr. Biol.9, 97–100 (1999). CASPubMed Google Scholar
Lettice, L. A. et al. Disruption of a long-range _cis_-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA99, 7548–7553 (2002). CASPubMedPubMed Central Google Scholar
Berman, B. P. et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl Acad. Sci. USA99, 757–762 (2002). CASPubMedPubMed Central Google Scholar
Markstein, M., Markstein, P., Markstein, V. & Levine, M. S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl Acad. Sci. USA99, 763–768 (2002). CASPubMed Google Scholar
Chiang, D. Y., Moses, A. M., Kellis, M., Lander, E. S. & Eisen, M. B. Phylogenetically and spatially conserved word pairs associated with gene-expression changes in yeasts. Genome Biol.4, R43 (2003). PubMedPubMed Central Google Scholar
Moses, A. M., Chiang, D. Y., Kellis, M., Lander, E. S. & Eisen, M. B. Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol. Biol.3, 19 (2003). PubMedPubMed Central Google Scholar
Anand, S. et al. Divergence of Hoxc8 early enhancer parallels diverged axial morphologies between mammals and fishes. Proc. Natl Acad. Sci. USA100, 15666–15669 (2003). CASPubMedPubMed Central Google Scholar
Mainguy, G. et al. A position-dependent organisation of retinoid response elements is conserved in the vertebrate Hox clusters. Trends Genet.19, 476–479 (2003). CASPubMed Google Scholar
Erwin, D. H. & Davidson, E. H. The last common bilaterian ancestor. Development129, 3021–3032 (2002). One of the many insightful studies by this group that characterizes genetic regulatory networks, aspects of which are shared by all bilaterians, in contrast to other aspects that probably evolved later, in subgroups of species. CASPubMed Google Scholar
Davidson, E. H. et al. A genomic regulatory network for development. Science295, 1669–1678 (2002). CASPubMed Google Scholar
Bejerano, G. et al. Ultra-conserved elements in the human genome. Science 6 May 2004 (doi:10.1126/science.1098119). Seminal study first reporting the characterization of ultra-conserved elements in mammalian genomes.
Dodou, E., Xu, S. M. & Black, B. L. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech. Dev.120, 1021–1032 (2003). CASPubMed Google Scholar
Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature403, 564–567 (2000). First convincing demonstration of the role of balancing selection in maintaining an invariant function in enhancers with diverging sequence. CASPubMed Google Scholar
Takahashi, H., Mitani, Y., Satoh, G. & Satoh, N. Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development126, 3725–3734 (1999). CASPubMed Google Scholar
Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1155 (2000). CASPubMed Google Scholar
Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature413, 514–519 (2001). CASPubMed Google Scholar
Lawn, R. M. et al. The recurring evolution of lipoprotein(a). Insights from cloning of hedgehog apolipoprotein(a). J. Biol. Chem.270, 24004–24009 (1995). CASPubMed Google Scholar
Boffelli, D., Cheng, J. F. & Rubin, E. M. Convergent evolution in primates and an insectivore. Genomics83, 19–23 (2004). CASPubMed Google Scholar
King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science188, 107–116 (1975). CASPubMed Google Scholar
Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol.17, 32–43 (2000). CASPubMed Google Scholar
Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci.13, 555–556 (1997). CASPubMed Google Scholar
Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet.32, 415–435 (1998). CASPubMed Google Scholar
Swanson, W. J., Yang, Z., Wolfner, M. F. & Aquadro, C. F. Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc. Natl Acad. Sci. USA98, 2509–2514 (2001). CASPubMedPubMed Central Google Scholar
Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet.3, 137–144 (2002). CASPubMed Google Scholar
Wyckoff, G. J., Wang, W. & Wu, C. I. Rapid evolution of male reproductive genes in the descent of man. Nature403, 304–309 (2000). CASPubMed Google Scholar
Clark, A. G., Begun, D. J. & Prout, T. Female × male interactions in Drosophila sperm competition. Science283, 217–220 (1999). CASPubMed Google Scholar
Goldberg, A. et al. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Proc. Natl Acad. Sci. USA100, 5873–5878 (2003). CASPubMedPubMed Central Google Scholar
Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature418, 869–872 (2002). Elegant identification of a gene suspected to be involved in the development of speech undergoing positive selection in the human lineage. CASPubMed Google Scholar
Huttley, G. A. et al. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Australian Breast Cancer Family Study. Nature Genet.25, 410–413 (2000). CASPubMed Google Scholar
Stedman, H. H. et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature428, 415–418 (2004). CASPubMed Google Scholar
Clark, A. G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science302, 1960–1963 (2003). CASPubMed Google Scholar
Zhang, J., Zhang, Y. P. & Rosenberg, H. F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genet.30, 411–415 (2002). CASPubMed Google Scholar
Fleming, M. A., Potter, J. D., Ramirez, C. J., Ostrander, G. K. & Ostrander, E. A. Understanding missense mutations in the BRCA1 gene: an evolutionary approach. Proc. Natl Acad. Sci. USA100, 1151–1156 (2003). CASPubMedPubMed Central Google Scholar
Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elemements. Nature Rev. Genet.5, 276–287 (2004). CASPubMed Google Scholar
Gumucio, D. L. et al. Differential phylogenetic footprinting as a means to identify base changes responsible for recruitment of the anthropoid γ-gene to a fetal expression pattern. J. Biol. Chem.269, 15371–15380 (1994). CASPubMed Google Scholar
Rockman, M. V., Hahn, M. W., Soranzo, N., Goldstein, D. B. & Wray, G. A. Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr. Biol.13, 2118–2123 (2003). CASPubMed Google Scholar
Frazer, K. A. et al. Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates. Genome Res.13, 341–346 (2003). CASPubMedPubMed Central Google Scholar
Locke, D. P. et al. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res.13, 347–357 (2003). CASPubMedPubMed Central Google Scholar
Yu, N. et al. Larger genetic differences within Africans than between Africans and Eurasians. Genetics161, 269–274 (2002). CASPubMedPubMed Central Google Scholar
Collins, F. S., Green, E. D., Guttmacher, A. E. & Guyer, M. S. A vision for the future of genomics research. Nature422, 835–847 (2003). CASPubMed Google Scholar
Dermitzakis, E. T. et al. Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science302, 1033–1035 (2003). CASPubMed Google Scholar
Cooper, G. M. et al. Quantitative estimates of sequence divergence for comparative analyses of mammalian genomes. Genome Res.13, 813–820 (2003). CASPubMedPubMed Central Google Scholar
Margulies, E. H., Blanchette, M., NISC Comparative Sequencing Program, Haussler, D. & Green, E. D. Identification and characterization of multi-species conserved sequences. Genome Res.13, 2507–2518 (2003). CASPubMedPubMed Central Google Scholar
Frazer, K. A. et al. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res.14, 367–372 (2004). CASPubMedPubMed Central Google Scholar
Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell101, 577–580 (2000). CASPubMed Google Scholar
Fay, J. C., Wyckoff, G. J. & Wu, C. I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature415, 1024–1026 (2002). CASPubMed Google Scholar
Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res.23, 23–35 (1974). CASPubMed Google Scholar
Gellner, K. & Brenner, S. Analysis of 148 kb of genomic DNA around the wnt1 locus of Fugu rubripes. Genome Res.9, 251–258 (1999). CASPubMedPubMed Central Google Scholar
Muller, F. et al. Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. Development126, 2103–2116 (1999). CASPubMed Google Scholar
Bagheri-Fam, S., Ferraz, C., Demaille, J., Scherer, G. & Pfeifer, D. Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics78, 73–82 (2001). CASPubMed Google Scholar
Hans, S. & Campos-Ortega, J. A. On the organisation of the regulatory region of the zebrafish δD gene. Development129, 4773–4784 (2002). CASPubMed Google Scholar
Santini, S., Boore, J. L. & Meyer, A. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res.13, 1111–1122 (2003). CASPubMedPubMed Central Google Scholar
Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell113, 405–417 (2003). One of the most elegant examples of the application of distant vertebrate sequence comparisons aiding the sifting of large genomic intervals for functional sequences. CASPubMed Google Scholar
Griffin, C., Kleinjan, D. A., Doe, B. & van Heyningen, V. New 3′ elements control Pax6 expression in the developing pretectum, neural retina and olfactory region. Mech. Dev.112, 89–100 (2002). CASPubMed Google Scholar
Eggers, J. H., Stock, M., Fliegauf, M., Vonderstrass, B. & Otto, F. Genomic characterization of the RUNX2 gene of Fugu rubripes. Gene291, 159–167 (2002). CASPubMed Google Scholar