MicroRNAs: small RNAs with a big role in gene regulation (original) (raw)
References
del Solar, G. & Espinosa, M. Plasmid copy number control: an ever-growing story. Mol. Microbiol.37, 492–500 (2000). CASPubMed Google Scholar
Mlynarczyk, S. K. & Panning, B. X inactivation: Tsix and Xist as yin and yang. Curr. Biol.10, R899–R903 (2000). CASPubMed Google Scholar
Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113, 673–676 (2003). CASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Lai, E. C. microRNAs: runts of the genome assert themselves. Curr. Biol.13, R925–R936 (2003). CASPubMed Google Scholar
Pasquinelli, A. E. & Ruvkun, G. Control of developmental timing by micrornas and their targets. Annu. Rev. Cell Dev. Biol.18, 495–513 (2002). CASPubMed Google Scholar
McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol.13, 253–258 (2003). CASPubMed Google Scholar
Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science301, 336–338 (2003). CASPubMed Google Scholar
Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426, 845–849 (2003). ArticleCASPubMed Google Scholar
Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell24, 59–69 (1981). CASPubMed Google Scholar
Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell57, 49–57 (1989). CASPubMed Google Scholar
Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science226, 409–416 (1984). CASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). Described the identification of the first microRNA,lin-4, and reported the sequence complementarity betweenlin-4and the 3′ UTR of thelin-14mRNA. CASPubMed Google Scholar
Wightman, B., Burglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev.5, 1813–1824 (1991). CASPubMed Google Scholar
Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature338, 313–319 (1989). CASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). CASPubMed Google Scholar
Ha, I., Wightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev.10, 3041–3050 (1996). CASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). Described the translational repression of LIN-14 bylin-4during temporal regulation of larval development. This was the first functional characterization of a microRNA. CASPubMed Google Scholar
Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell88, 637–646 (1997). CASPubMed Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Lin, S. Y. et al. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell4, 639–650 (2003). CASPubMed Google Scholar
Abrahante, J. E. et al. The _Caenorhabditis elegans hunchback_-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell4, 625–637 (2003). CASPubMed Google Scholar
Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell5, 659–669 (2000). ArticleCASPubMed Google Scholar
Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev.18, 132–137 (2004). CASPubMedPubMed Central Google Scholar
Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol.12, 735–739 (2002). ArticleCASPubMed Google Scholar
Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5, R13 (2004). PubMedPubMed Central Google Scholar
Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature408, 86–89 (2000). CASPubMed Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). Described the identification of Drosha and characterizes its function in processing pri-miRNA into pre-miRNA. CASPubMed Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). CASPubMedPubMed Central Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). CASPubMed Google Scholar
Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev.15, 188–200 (2001). CASPubMedPubMed Central Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000). CASPubMed Google Scholar
Baulcombe, D. Viruses and gene silencing in plants. Arch. Virol.15 (Suppl.), 189–201 (1999). CAS Google Scholar
Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA99 (Suppl 4), 16499–16506 (2002). CASPubMedPubMed Central Google Scholar
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J.19, 5194–5201 (2000). CASPubMedPubMed Central Google Scholar
Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science301, 798–802 (2003). CASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). CASPubMed Google Scholar
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). CASPubMed Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). CASPubMed Google Scholar
Chen, X. A MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science303, 2022–2025 (2004). CASPubMed Google Scholar
Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056 (2002). CASPubMed Google Scholar
Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell110, 513–520 (2002). The first bioinfomatic effort to predict microRNA targets on the basis of sequence complementarity between plant miRNAs and their putative targets. It has guided functional studies of several miRNAs. CASPubMed Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). CASPubMed Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). Described the identification of Dicer and characterized its function in processing long dsRNAs into small interfering RNAs. CASPubMed Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). CASPubMed Google Scholar
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150 (2001). Described the purification of the RISC, and the identification of Argonaute 2 as a key component. CASPubMed Google Scholar
Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). CASPubMedPubMed Central Google Scholar
Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16, 720–728 (2002). CASPubMedPubMed Central Google Scholar
Dostie, J., Mourelatos, Z., Yang, M., Sharma, A. & Dreyfuss, G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA9, 180–186 (2003). CASPubMedPubMed Central Google Scholar
Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA9, 175–179 (2003). CASPubMedPubMed Central Google Scholar
Zeng, Y. & Cullen, B. R. Sequence requirements for micro RNA processing and function in human cells. RNA9, 112–123 (2003). CASPubMedPubMed Central Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). CASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). CASPubMed Google Scholar
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). CASPubMedPubMed Central Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). CASPubMed Google Scholar
Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol.10, 1026–1032 (2003). CASPubMed Google Scholar
Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003). PubMed Google Scholar
Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol.11, 214–218 (2004). CAS Google Scholar
Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure (Camb).9, 1225–1236 (2001). CAS Google Scholar
Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol.132, 1382–1390 (2003). CASPubMedPubMed Central Google Scholar
Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol.12, 1484–1495 (2002). CASPubMedPubMed Central Google Scholar
Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci.7, 487–491 (2002). CASPubMed Google Scholar
Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. & Sontheimer, E. J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell117, 83–94 (2004). CASPubMed Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). CASPubMed Google Scholar
Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci.7, 113–117 (2004). CASPubMed Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). CASPubMed Google Scholar
Pellino, J. L. & Sontheimer, E. J. R2D2 leads the silencing trigger to mRNA's death star. Cell115, 132–133 (2003). CASPubMed Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). CASPubMed Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). This paper, together with reference 71, characterized the regulatory mechanism of the asymmetric assembly of siRNA/miRNA into the RISC complex. CASPubMed Google Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36 (2003). CASPubMed Google Scholar
Hake, S. MicroRNAs: a role in plant development. Curr. Biol.13, R851–R852 (2003). CASPubMed Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). CASPubMed Google Scholar
Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature425, 411–414 (2003). CASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). CASPubMed Google Scholar
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science294, 853–858 (2001). CASPubMed Google Scholar
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science294, 862–864 (2001). This paper, together with references 77 and 78, was among the first cloning efforts to identify large numbers of miRNAs from worm, fly and mammals. CASPubMed Google Scholar
Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA101, 360–365 (2004). CASPubMed Google Scholar
Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev.16, 1616–1626 (2002). CASPubMedPubMed Central Google Scholar
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science299, 1540 (2003). CASPubMed Google Scholar
Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev. Biol.259, 9–18 (2003). CASPubMed Google Scholar
Houbaviy, H. B., Murray, M. F. & Sharp, P. A. Embryonic stem cell-specific microRNAs. Dev. Cell5, 351–358 (2003). CASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). CASPubMed Google Scholar
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer39, 167–169 (2004). CASPubMed Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). CASPubMedPubMed Central Google Scholar
Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–1281 (2003). CASPubMedPubMed Central Google Scholar
Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science293, 2269–2271 (2001). CASPubMedPubMed Central Google Scholar
Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet.35, 217–218 (2003). CASPubMed Google Scholar
Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet.35, 215–217 (2003). CASPubMed Google Scholar
Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J.17, 1799–1809 (1998). CASPubMedPubMed Central Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). CASPubMedPubMed Central Google Scholar
Hipfner, D. R., Weigmann, K. & Cohen, S. M. The Bantam gene regulates Drosophila growth. Genetics161, 1527–1537 (2002). CASPubMedPubMed Central Google Scholar
Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13, 790–795 (2003). CASPubMed Google Scholar
Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature425, 257–263 (2003). CASPubMed Google Scholar
Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science303, 83–86 (2004). CASPubMed Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). CASPubMed Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol.1, E60 (2003). PubMedPubMed Central Google Scholar
Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). CASPubMedPubMed Central Google Scholar
Michael, M. Z., O'Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1, 882–891 (2003). CASPubMed Google Scholar
Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev.17, 49–63 (2003). CASPubMedPubMed Central Google Scholar
Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol.13, 1768–1774 (2003). CASPubMed Google Scholar
Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature428, 84–88 (2004). CASPubMed Google Scholar