Pharmacogenetics – five decades of therapeutic lessons from genetic diversity (original) (raw)

References

  1. Garrod, A. E. The incidence of alkaptonuria. A study in chemical individuality. Lancet, 1616–1620 (1902).
  2. Garrod, A. E. The inborn errors of metabolism, (Oxford Univ. Press, London, UK, 1909).
    Google Scholar
  3. Bateson, W. Mendel's principles of heredity: A defence, (Cambridge Univ. Press, Cambridge, UK, 1902).
    Google Scholar
  4. Garrod, A. E. The inborn factors of disease (Oxford Univ. Press, London, UK, 1931).
    Book Google Scholar
  5. Fox, A. L. The relationship between chemical constitution and taste. Proc. Natl Acad. Sci. USA 18, 115–120 (1932).
    Article CAS Google Scholar
  6. Snyder, L. H. Studies in human inheritance IX. The inheritance of taste deficiency in man. Ohio J. Sci. 32, 436–468 (1932).
    Google Scholar
  7. Clayman, C. B. et al. Toxicity of primaquine in Caucasians. J. Am. Med. Assoc. 149, 1563–1568 (1952).
    Article CAS Google Scholar
  8. Carson, P. E., Flanagan, C. L., Ickes, C. E. & Alving, A. S. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484–485 (1956).
    Article CAS Google Scholar
  9. Luzatto, L., Mehta, A. & Vulliamy, M. Y. in The Metabolic and Molecular Basis of Inherited Diseases Vol. 3 (eds Scriver, C. R. et al.) 4517–4553 (McGraw–Hill Inc., New York, USA, 2001).
    Google Scholar
  10. Lehmann, H. & Ryan, E. The familial incidence of low pseudocholinesterase level. Lancet 271, 124 (1956).
    Article CAS Google Scholar
  11. Kalow, W. & Staron, N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can. J. Med. Sci. 35, 1305–1320 (1957).
    CAS Google Scholar
  12. Motulsky, A. Drug reactions, enzymes and biochemical genetics. JAMA 165, 835–837 (1957).
    Article CAS Google Scholar
  13. Vogel, F. Moderne Probleme der Humangenetik. Ergebn. Inn. Med. Kinderheilkd. 12, 52–125 (1959).
    Google Scholar
  14. Kalow, W. Pharmacogenetics: heredity and the response to drugs (W. B. Saunders & Co., Philadelphia, USA, 1962).
    Google Scholar
  15. Williams, R. J. Biochemical Individuality, (John Wiley & Sons, New York, USA, 1956).
    Google Scholar
  16. Vesell, E. S. Twin studies in pharmacogenetics. Hum. Genet. 1, (Suppl.) 19–30 (1978).
    Google Scholar
  17. Alexanderson, B., Evans, D. A. & Sjoqvist, F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br. Med. J. 4, 764–768 (1969).
    Article CAS Google Scholar
  18. Price-Evans, D. A. in Clinical and Molecular Pharmacogenetics (Cambridge Univ. Press, Cambridge, UK, 1993).
    Google Scholar
  19. Evans, W. E. & McLeod, H. L. Pharmacogenomics — drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003).
    Article CAS Google Scholar
  20. Weber, W. W. Pharmacogenetics 334 (Oxford Univ. Press, Oxford, UK, 1997).
    Google Scholar
  21. Kalow, W., Meyer, U. A. & Tyndale, R. F. Pharmacogenomics (Marcel Dekker, New York and Basel, 2001).
    Google Scholar
  22. Brewer, G. J. Annotation: human ecology, an expanding role for the human geneticist. Am. J. Hum. Genet. 23, 92–94 (1971).
    CAS PubMed PubMed Central Google Scholar
  23. Sellers, E. M., Tyndale, R. F. & Fernandes, L. C. Decreasing smoking behaviour and risk through CYP2A6 inhibition. Drug Discov. Today 8, 487–493 (2003).
    Article CAS Google Scholar
  24. Meyer, U. A. & Zanger, U. M. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 37, 269–296 (1997).
    Article CAS Google Scholar
  25. Zanger, U. M., Raimundo, S. & Eichelbaum, M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch. Pharmacol. 369, 23–37 (2004).
    Article CAS Google Scholar
  26. Smith, R. L. Introduction: human genetic variations in oxidative drug metabolism. Xenobiotica 16, 361–365 (1986).
    Article Google Scholar
  27. Mahgoub, A., Idle, J. R., Dring, L. G., Lancester, R. & Smith, R. L. Polymorphic hydroxylation of debrisoquine in man. Lancet 2, 584–586 (1977).
    Article CAS Google Scholar
  28. Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective _N_-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183–187 (1979).
    Article CAS Google Scholar
  29. Kahn, G. C., Boobis, A. R., Murray, S., Brodie, M. J. & Davies, D. S. Assay and characterisation of debrisoquine 4-hydroxylase activity of microsomal fractions of human liver. Br. J. Clin. Pharmacol. 13, 637–645 (1982).
    Article CAS Google Scholar
  30. Meier, P. J., Mueller, H. K., Dick, B. & Meyer, U. A. Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85, 682–692 (1983).
    CAS PubMed Google Scholar
  31. Distlerath, L. M. et al. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 260, 9057–9067 (1985).
    CAS PubMed Google Scholar
  32. Gut, J. et al. Debrisoquine-type polymorphism of drug oxidation: purification from human liver of a cytochrome P450 isozyme with high activity for bufuralol hydroxylation. Febs Lett. 173, 287–290 (1984).
    Article CAS Google Scholar
  33. Zanger, U. M., Hauri, H. P., Loeper, J., Homberg, J. C. & Meyer, U. A. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. Proc. Natl Acad. Sci. USA 85, 8256–8260 (1988).
    Article CAS Google Scholar
  34. Gonzalez, F. J. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331, 442–446 (1988).
    Article CAS Google Scholar
  35. Skoda, R. C., Gonzalez, F. J., Demierre, A. & Meyer, U. A. Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Natl Acad. Sci. USA 85, 5240–5243 (1988).
    Article CAS Google Scholar
  36. Kagimoto, M., Heim, M., Kagimoto, K., Zeugin, T. & Meyer, U. A. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J. Biol. Chem. 265, 17209–17214 (1990).
    CAS PubMed Google Scholar
  37. Gough, A. C. et al. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347, 773–776 (1990).
    Article CAS Google Scholar
  38. Heim, M. & Meyer, U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336, 529–532 (1990).
    Article CAS Google Scholar
  39. Bertilsson, L., Aberg-Wistedt, A. & Gustaffson, L. L. Extremely rapid hydroxylation of debrisoquine; a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther. Drug. Monit. 7, 478–480 (1985).
    Article CAS Google Scholar
  40. Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA 90, 11825–11829 (1993).
    Article CAS Google Scholar
  41. Bertilsson, L. et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 341, 63 (1993).
    Article CAS Google Scholar
  42. Küpfer, A. & Preisig, R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur. J. Clin. Pharmacol. 26, 753–759 (1984).
    Article Google Scholar
  43. de Morais, S. M. F. et al. Identification of a new genetic defect responsible for the polymorphism of _S_-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594–598 (1994).
    CAS PubMed Google Scholar
  44. Sullivan-Klose, T. H. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).
    Article CAS Google Scholar
  45. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).
    Article Google Scholar
  46. Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes genomic. Nature Rev. Genet. 4, 937–947 (2003).
    Article CAS Google Scholar
  47. Roden, D. M. & George, A. L. Jr. The genetic basis of variability in drug responses. Nature Rev. Drug Discov. 1, 37–44 (2002).
    Article CAS Google Scholar
  48. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).
    Article CAS Google Scholar
  49. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).
    Article CAS Google Scholar
  50. Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug therapy': high expectations and disappointing achievements. Am. J. Pharmacogenomics 3, 361–370 (2003).
    Article Google Scholar
  51. Handschin, C. & Meyer, U. A. Induction of drug metabolism: the role of nuclear receptors. Pharmacol. Rev. 55, 649–673 (2003).
    Article CAS Google Scholar
  52. Chou, W. H. et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J. Clin. Psychopharmacol. 20, 246–251 (2000).
    Article CAS Google Scholar
  53. Bönicke, R. & Reif, W. Enzymatische Inaktivierung von Isonicotinsäure hydrazide im menschlichen und tierischen Organismus. Arch. Exp. Pathol. Pharmakol. 220, 321–333 (1953).
    Article Google Scholar
  54. Hughes, H. B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. On the metabolic fate of isoniazid. J. Pharmacol. Exp. Therap. 109, 444–452 (1953).
    CAS Google Scholar
  55. Hughes, H. B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am. Rev. Tuberc. 70, 266–273 (1954).
    CAS PubMed Google Scholar
  56. Evans, D. A. P., Manley, F. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. Br. Med. J. 2, 485–491 (1960).
    Article CAS Google Scholar
  57. Blum, M., Demierre, A., Grant, D. M., Heim, M. & Meyer, U. A. Molecular mechanism of slow acetylation in man. Proc. Natl Acad. Sci. USA. 88, 5237–5241 (1991).
    Article CAS Google Scholar
  58. Vatsis, K. P., Martel, K. J. & Weber, W. W. Diverse point mutations in the human gene for polymorphic _N_-acetyltransferase. Proc. Natl Acad. Sci. USA 88, 6333–6337 (1991).
    Article CAS Google Scholar
  59. Meyer, U. A. Pharmacogenetics and adverse drug reactions. Lancet 356, 1667–1671 (2000).
    Article CAS Google Scholar
  60. Kirchheiner, J. et al. Individualized medicine — implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry 36 (Suppl. 3), S235–S243 (2003).
    CAS PubMed Google Scholar
  61. Vatsis, K. P. et al. Nomenclature for _N_-acetyltransferases. Pharmacogenetics 5, 1–17 (1995).
    Article CAS Google Scholar
  62. Masood, E. A. A consortium plans free SNP map of human genome. Nature 398, 545–546 (1999).
    Article CAS Google Scholar
  63. Scriver, C. R. & Childs, B. (eds) Garrod's Inborn Factors Of Disease (Clarendon Press, Oxford, UK, 1989).
    Google Scholar

Download references