Genetics of osteoporosis from genome-wide association studies: advances and challenges (original) (raw)
Kanis, J. A. Diagnosis of osteoporosis. Osteoporos. Int.7 (Suppl. 3), S108–S116 (1997). ArticlePubMed Google Scholar
Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res.22, 465–475 (2007). ArticlePubMed Google Scholar
Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int.19, 385–397 (2008). ArticleCASPubMedPubMed Central Google Scholar
Slemenda, C. W. et al. The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporos. Int.6, 178–182 (1996). ArticleCASPubMed Google Scholar
Smith, D. M., Nance, W. E., Kang, K. W., Christian, J. C. & Johnston, C. C. Jr. Genetic factors in determining bone mass. J. Clin. Invest.52, 2800–2808 (1973). ArticleCASPubMedPubMed Central Google Scholar
Arden, N. K., Baker, J., Hogg, C., Baan, K. & Spector, T. D. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res.11, 530–534 (1996). ArticleCASPubMed Google Scholar
Marshall, D., Johnell, O. & Wedel, H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ312, 1254–1259 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jergas, M. & Gluer, C. C. Assessment of fracture risk by bone density measurements. Semin. Nucl. Med.27, 261–275 (1997). ArticleCASPubMed Google Scholar
Andrew, T., Antioniades, L., Scurrah, K. J., Macgregor, A. J. & Spector, T. D. Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J. Bone Miner. Res.20, 67–74 (2005). ArticlePubMed Google Scholar
Michaelsson, K., Melhus, H., Ferm, H., Ahlbom, A. & Pedersen, N. L. Genetic liability to fractures in the elderly. Arch. Intern. Med.165, 1825–1830 (2005). ArticlePubMed Google Scholar
Kaufman, J. M. et al. Genome-wide linkage screen of bone mineral density (BMD) in European pedigrees ascertained through a male relative with low BMD values: evidence for quantitative trait loci on 17q21-23, 11q12-13, 13q12-14, and 22q11. J. Clin. Endocrinol. Metab.93, 3755–3762 (2008). ArticleCASPubMed Google Scholar
Hsu, Y. H. et al. Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum. Genet.118, 568–577 (2006). ArticleCASPubMed Google Scholar
Peacock, M. et al. Bone mineral density variation in men is influenced by sex-specific and non sex-specific quantitative trait loci. Bone45, 443–448 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xiao, P. et al. Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J. Bone Miner. Res.21, 1536–1544 (2006). ArticleCASPubMed Google Scholar
Ioannidis, J. P. et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J. Bone Miner. Res.22, 173–183 (2007). ArticleCASPubMed Google Scholar
Ralston, S. H. & Uitterlinden, A. G. Genetics of osteoporosis. Endocr. Rev.31, 629–662 (2010). ArticleCASPubMed Google Scholar
Richards, J. B. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med.151, 528–537 (2009). ArticlePubMedPubMed Central Google Scholar
Ferrari, S. L. et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am. J. Hum. Genet.74, 866–875 (2004). ArticleCASPubMedPubMed Central Google Scholar
van Meurs, J. B. et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA299, 1277–1290 (2008). ArticleCASPubMedPubMed Central Google Scholar
Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet371, 1505–1512 (2008). Together with reference 21, these papers were the first GWASs for osteoporosis, and they made it clear that there were no common genetic variants of large effect for osteoporosis. ArticleCASPubMedPubMed Central Google Scholar
Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med.358, 2355–2365 (2008). ArticleCASPubMed Google Scholar
Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nature Genet.41, 15–17 (2009). ArticleCASPubMed Google Scholar
Timpson, N. J. et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum. Mol. Genet.18, 1510–1517 (2009). This is the only GWAS for BMD that has been conducted in children. ArticleCASPubMedPubMed Central Google Scholar
Xiong, D. H. et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am. J. Hum. Genet.84, 388–398 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genet.41, 1199–1206 (2009). This is the first large-scale consortium-style GWAS for osteoporosis. This paper identified many clinically relevant drug targets for osteoporosis and substantially expanded the number of loci associated with BMD. ArticleCASPubMed Google Scholar
Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genet.44, 491–501 (2012). This is the largest global effort to describe the genetic determinants of BMD and fracture. Using BMD loci, this paper was also the first to assess the contribution of BMD GWAS loci to fracture in a large sample size. ArticleCASPubMed Google Scholar
Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet.8, e1002607 (2012). ArticleCASPubMedPubMed Central Google Scholar
Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet.7, e1001372 (2011). This is an important paper demonstrating the relative use of selecting extremes of a phenotypic continuum to identify common genetic variants. ArticleCASPubMedPubMed Central Google Scholar
Hsu, Y. H. et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet.6, e1000977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zheng, H. et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength and osteoporotic fracture risk. PLoS Genet. 5 Jul 2012 (doi: 10.1371/journal.pgen.1002745). Together with reference 32, this paper showed that forearm and total body BMD had allelic architectures that appeared to be less polygenic than lumbar spine and femoral neck sites. ArticleCASPubMedPubMed Central Google Scholar
Medina-Gomez, C. et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 5 Jul 2012 (doi: 10.1371/journal.pgen.1002718). ArticleCASPubMedPubMed Central Google Scholar
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449, 851–861 (2007). ArticleCASPubMed Google Scholar
Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nature Rev. Genet.9, 255–266 (2008). ArticleCASPubMed Google Scholar
Guo, Y. et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet.6, e1000806 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med.361, 756–765 (2009). ArticleCASPubMed Google Scholar
Duncan, E. L. & Brown, M. A. Clinical review 2: genetic determinants of bone density and fracture risk—state of the art and future directions. J. Clin. Endocrinol. Metabolism95, 2576–2587 (2010). ArticleCAS Google Scholar
Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol.10, 468–477 (2009). ArticleCAS Google Scholar
Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev.29, 155–192 (2008). ArticleCASPubMed Google Scholar
Komori, T. Signaling networks in RUNX2-dependent bone development. J. Cell. Biochem.112, 750–755 (2011). ArticleCASPubMed Google Scholar
Kubota, T., Michigami, T. & Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metabolism27, 265–271 (2009). ArticleCAS Google Scholar
Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell. Metabolism11, 161–171 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gong, Y. et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am. J. Hum. Genet.59, 146–151 (1996). CASPubMedPubMed Central Google Scholar
Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet.72, 763–771 (2003). ArticleCASPubMedPubMed Central Google Scholar
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet.10, 537–543 (2001). ArticleCASPubMed Google Scholar
Leupin, O. et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J. Bone Miner. Res.22, 1957–1967 (2007). ArticleCASPubMed Google Scholar
Estrach, S., Ambler, C. A., Lo Celso, C., Hozumi, K. & Watt, F. M. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development133, 4427–4438 (2006). ArticleCASPubMed Google Scholar
Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet.16, 243–251 (1997). ArticleCASPubMed Google Scholar
Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nature Med.14, 299–305 (2008). ArticleCASPubMed Google Scholar
Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nature Med.17, 1235–1241 (2011). ArticleCASPubMed Google Scholar
Fuller, K., Wong, B., Fox, S., Choi, Y. & Chambers, T. J. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J. Exp. Med.188, 997–1001 (1998). ArticleCASPubMedPubMed Central Google Scholar
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell89, 309–319 (1997). ArticleCASPubMed Google Scholar
Mizuno, A. et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun.247, 610–615 (1998). ArticleCASPubMed Google Scholar
Li, Y. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood109, 3839–3848 (2007). ArticleCASPubMedPubMed Central Google Scholar
Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341, 879–884 (1999). ArticleCASPubMed Google Scholar
Sobacchi, C. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nature Genet.39, 960–962 (2007). ArticleCASPubMed Google Scholar
Guerrini, M. M. et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet.83, 64–76 (2008). ArticleCASPubMedPubMed Central Google Scholar
Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med.347, 175–184 (2002). ArticleCASPubMed Google Scholar
Albagha, O. M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nature Genet.42, 520–524 (2010). ArticleCASPubMed Google Scholar
Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol.25, 629–648 (2009). ArticleCASPubMed Google Scholar
Amizuka, N. et al. Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev. Biol.175, 166–176 (1996). ArticleCASPubMed Google Scholar
Smits, P., Dy, P., Mitra, S. & Lefebvre, V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J. Cell Biol.164, 747–758 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). ArticleCASPubMed Google Scholar
Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet.16, 307–310 (1997). ArticleCASPubMed Google Scholar
Lewiecki, E. M. Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discovery Med.12, 263–273 (2011). Google Scholar
Gauthier, J. Y. et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett.18, 923–928 (2008). ArticleCASPubMed Google Scholar
McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell141, 210–217 (2010). ArticleCASPubMed Google Scholar
Leslie, W. D. et al. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J. Bone Miner. Res.25, 2350–2358 (2010). ArticlePubMed Google Scholar
Pepe, M. S., Gu, J. W. & Morris, D. E. The potential of genes and other markers to inform about risk. Cancer Epidemiol. Biomarkers Prev.19, 655–665 (2010). ArticleCAS Google Scholar
Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genet.43, 519–525 (2011). ArticleCASPubMed Google Scholar
Ladouceur, M., Dastani, Z., Aulchenko, Y. S., Greenwood, C. M. & Richards, J. B. The empirical power of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLoS Genet.8, e1002496 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ladouceur, M., Leslie, W. D., Dastani, Z., Goltzman, D. & Richards, J. B. An efficient paradigm for genetic epidemiology cohort creation. PLoS ONE5, e14045 (2010). ArticleCASPubMedPubMed Central Google Scholar
Talens, R. P. et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J.24, 3135–3144 (2010). ArticleCASPubMed Google Scholar
Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature477, 54–60 (2011). ArticleCASPubMed Google Scholar
Josse, R. G. Bone biology and the role of RANK/RANKL/OPG pathway. HealthPlexus[online], (2008). Google Scholar
Mackie, E. J., Tatarczuch, L. & Mirams, M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J. Endocrinol.211, 109–121 (2011). ArticleCASPubMed Google Scholar
Kung, A. W. et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am. J. Hum. Genet.86, 229–239 (2010). ArticleCASPubMedPubMed Central Google Scholar
Koller, D. L. et al. Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women. J. Clin. Endocrinol. Metabolism95, 1802–1809 (2010). ArticleCAS Google Scholar
Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA282, 637–645 (1999). ArticleCASPubMed Google Scholar
Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med.344, 1434–1441 (2001). ArticleCASPubMed Google Scholar
Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Internal Med.146, 326–339 (2007). Article Google Scholar
Liberman, U. A. et al. Effect of oral alendronate on bone mineral. Density and the incidence of fractures in postmenopausal osteoporosis. New Engl. J. Med.333, 1437–1444 (1995). ArticleCASPubMed Google Scholar
Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA288, 321–333 (2002). ArticleCASPubMed Google Scholar