No post-genetics era in human disease research (original) (raw)
Martin, J. B. & Gusella, J. F. Huntington's disease. Pathogenesis and management. N. Engl. J. Med.315, 1267–1276 (1986). ArticleCAS Google Scholar
Vonsattel, J. P. & DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol.57, 369–384 (1998). ArticleCAS Google Scholar
Vonsattel, J. P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol.44, 559–577 (1985). ArticleCAS Google Scholar
Bhan, A. K., Mizoguchi, E., Smith, R. N. & Mizoguchi, A. Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol. Rev.169, 195–207 (1999). ArticleCAS Google Scholar
Coyle, J. T. An animal model for Huntington's disease. Biol. Psychiatry14, 251–276 (1979). CASPubMed Google Scholar
Beal, M. F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol.31, 119–130 (1992). ArticleCAS Google Scholar
Brouillet, E., Conde, F., Beal, M. F. & Hantraye, P. Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol.59, 427–468 (1999). ArticleCAS Google Scholar
Beverstock, G. C. The current state of research with peripheral tissues in Huntington disease. Hum. Genet.66, 115–131 (1984). ArticleCAS Google Scholar
Ptacek, L. J. Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system. Neuromuscul. Disord.7, 250–255 (1997). ArticleCAS Google Scholar
Tolleshaug, H., Hobgood, K. K., Brown, M. S. & Goldstein, J. L. The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell32, 941–951 (1983). ArticleCAS Google Scholar
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell72, 971–983 (1993).
Janus, C. & Westaway, D. Transgenic mouse models of Alzheimer's disease. Physiol. Behav.73, 873–886 (2001). ArticleCAS Google Scholar
LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C. & Jay, G. The Alzheimer's Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet.9, 21–30 (1995). ArticleCAS Google Scholar
Nakano, Y. et al. Accumulation of murine amyloid β42 in a gene-dosage-dependent manner in PS1 'knock-in' mice. Eur. J. Neurosci.11, 2577–2581 (1999). ArticleCAS Google Scholar
Citron, M. et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med.3, 67–72 (1997). ArticleCAS Google Scholar
Siman, R. et al. Presenilin-1 P264L knock-in mutation: differential effects on Aβ production, amyloid deposition, and neuronal vulnerability. J. Neurosci.20, 8717–8726 (2000). ArticleCAS Google Scholar
Moechars, D. et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem.274, 6483–6492 (1999). ArticleCAS Google Scholar
Hackam, A. S., Singaraja, R., Zhang, T., Gan, L. & Hayden, M. R. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum. Mol. Genet.8, 25–33 (1999). ArticleCAS Google Scholar
Cooper, J. K. et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet.7, 783–790 (1998). ArticleCAS Google Scholar
Persichetti, F. et al. Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment. Neurobiol. Dis.6, 364–375 (1999). ArticleCAS Google Scholar
Li, S. H., Cheng, A. L., Li, H. & Li, X. J. Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neurosci.19, 5159–5172 (1999). ArticleCAS Google Scholar
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell95, 55–66 (1998). ArticleCAS Google Scholar
Lunkes, A. & Mandel, J. L. A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum. Mol. Genet.7, 1355–1361 (1998). ArticleCAS Google Scholar
Hackam, A. S. et al. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol.141, 1097–1105 (1998). ArticleCAS Google Scholar
Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron21, 633–642 (1998). ArticleCAS Google Scholar
Faber, P. W., Alter, J. R., MacDonald, M. E. & Hart, A. C. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc. Natl Acad. Sci. USA96, 179–184 (1999). ArticleCAS Google Scholar
Kim, M. et al. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci.19, 964–973 (1999). ArticleCAS Google Scholar
Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell87, 493–506 (1996). ArticleCAS Google Scholar
Gusella, J. F. & MacDonald, M. E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci.1, 109–115 (2000). ArticleCAS Google Scholar
Heath, K. E. et al. Nonmuscle myosin heavy chain iia mutations define a spectrum of autosomal dominant macrothrombocytopenias: may-hegglin anomaly and fechtner, sebastian, epstein, and alport-like syndromes. Am. J. Hum. Genet.69, 1033–1045 (2001). ArticleCAS Google Scholar
Girard, T. et al. Genotype–phenotype comparison of the Swiss malignant hyperthermia population. Hum. Mutat.18, 357–358 (2001). ArticleCAS Google Scholar
Lia-Baldini, A. S. et al. A molecular approach to dominance in hypophosphatasia. Hum. Genet.109, 99–108 (2001). ArticleCAS Google Scholar
Stokowski, R. P. & Cox, D. R. Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am. J. Hum. Genet.66, 873–891 (2000). ArticleCAS Google Scholar
Gutmann, D. H., Geist, R. T., Xu, H., Kim, J. S. & Saporito-Irwin, S. Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum. Mol. Genet.7, 335–345 (1998). ArticleCAS Google Scholar
Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell90, 537–548 (1997). ArticleCAS Google Scholar
Sathasivam, K. et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum. Mol. Genet.8, 813–822 (1999). ArticleCAS Google Scholar
Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell90, 549–558 (1997). ArticleCAS Google Scholar
DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science277, 1990–1993 (1997). ArticleCAS Google Scholar
Huang, C. C. et al. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet.24, 217–233 (1998). ArticleCAS Google Scholar
Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA96, 4604–4609 (1999). ArticleCAS Google Scholar
Narain, Y., Wyttenbach, A., Rankin, J., Furlong, R. A. & Rubinsztein, D. C. A molecular investigation of true dominance in Huntington's disease. J. Med. Genet.36, 739–746 (1999). ArticleCAS Google Scholar
Heiser, V. et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington's disease therapy. Proc. Natl Acad. Sci. USA97, 6739–6744 (2000). ArticleCAS Google Scholar
Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science264, 1772–1775 (1994). ArticleCAS Google Scholar
Dal Canto, M. C. & Gurney, M. E. A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.)93, 537–550 (1997). ArticleCAS Google Scholar
Forlino, A., Porter, F. D., Lee, E. J., Westphal, H. & Marini, J. C. Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an α1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J. Biol. Chem.274, 37923–37931 (1999). ArticleCAS Google Scholar
Spring, K. et al. Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype. Cancer Res.61, 4561–4568 (2001). CASPubMed Google Scholar
Bobet, J., Mooney, R. F. & Gordon, T. Force and stiffness of old dystrophic (mdx) mouse skeletal muscles. Muscle Nerve21, 536–539 (1998). ArticleCAS Google Scholar
Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev.14, 1617–1630 (2000). CASPubMedPubMed Central Google Scholar
Li, H., Li, S. H., Yu, Z. X., Shelbourne, P. & Li, X. J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci.21, 8473–8481 (2001). ArticleCAS Google Scholar
Lin, C. H. et al. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum. Mol. Genet.10, 137–144 (2001). ArticleCAS Google Scholar
Wheeler, V. C. et al. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet.9, 503–513 (2000). ArticleCAS Google Scholar
Li, H., Li, S. H., Johnston, H., Shelbourne, P. F. & Li, X. J. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nature Genet.25, 385–389 (2000). ArticleCAS Google Scholar
Shelbourne, P. F. et al. A Huntington's disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet.8, 763–774 (1999). ArticleCAS Google Scholar
Lorenzetti, D. et al. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum. Mol. Genet.9, 779–785 (2000). ArticleCAS Google Scholar
MacDonald, M. E. et al. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease. Neurology53, 1330–1332 (1999). ArticleCAS Google Scholar
Rubinsztein, D. C. et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc. Natl Acad. Sci. USA94, 3872–3876 (1997). ArticleCAS Google Scholar
Persichetti, F. et al. Huntington's disease CAG trinucleotide repeats in pathologically confirmed post-mortem brains. Neurobiol. Dis.1, 159–166 (1994). ArticleCAS Google Scholar
Kieburtz, K. et al. Trinucleotide repeat length and progression of illness in Huntington's disease. J. Med. Genet.31, 872–874 (1994). ArticleCAS Google Scholar