Getting under the skin of epidermal morphogenesis (original) (raw)
Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell76, 1063–1073 (1994). CASPubMed Google Scholar
Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science287, 1427–1430 (2000). ArticleCASPubMed Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). CASPubMed Google Scholar
Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000).References3and4describe the location and characteristics of epidermal stem cells that reside in the bulge compartment of hair follicles. CASPubMed Google Scholar
Jones, P. H. & Watt, F. M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell73, 713–724 (1993). CASPubMed Google Scholar
Jones, P. H., Harper, S. & Watt, F. M. Stem cell patterning and fate in human epidermis. Cell80, 83–93 (1995). CASPubMed Google Scholar
Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA84, 2302–2306 (1987). CASPubMedPubMed Central Google Scholar
Watt, F. M. Epidermal stem cells: markers, patterning and the control of stem cell fate. Phil. Trans. R. Soc. Lond. B353, 831–837 (1998). CAS Google Scholar
Tani, H., Morris, R. J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA97, 10960–10965 (2000). CASPubMedPubMed Central Google Scholar
Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718 (1999). CASPubMed Google Scholar
Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature398, 708–713 (1999).References11and12describe the identification and cloning ofTrp63and the characterization of mice that lack p63 function. These papers show the importance of p63 in epidermal morphogenesis and its role in controlling proliferation versus differentiation. CASPubMed Google Scholar
Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genet.28, 165–168 (2001). CASPubMed Google Scholar
Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol.11, 558–568 (2001). CASPubMed Google Scholar
Bull, J. J. et al. Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. J. Invest. Dermatol.116, 617–622 (2001). CASPubMed Google Scholar
Barker, N. & Clevers, H. Catenins, Wnt signaling and cancer. Bioessays22, 961–965 (2000). CASPubMed Google Scholar
Millar, S. E. et al. WNT signaling in the control of hair growth and structure. Dev. Biol.207, 133–149 (1999). CASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). CASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998).This paper showed that ectopic β-catenin signalling in the postnatal epidermis was sufficient to induce hair-follicle differentiation pathways in cells that would otherwise remain epidermal in nature. CASPubMed Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). CASPubMedPubMed Central Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). CASPubMed Google Scholar
Niemann, C., Owens, D. M., Hulsken, J., Birchmeier, W. & Watt, F. M. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development129, 95–109 (2002). CASPubMed Google Scholar
Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.9, 700–713 (1995). CASPubMed Google Scholar
Lewis, J. Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol.9, 583–589 (1998). CASPubMed Google Scholar
Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell101, 499–510 (2000). CASPubMed Google Scholar
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). CASPubMed Google Scholar
Powell, B. C., Passmore, E. A., Nesci, A. & Dunn, S. M. The Notch signalling pathway in hair growth. Mech. Dev.78, 189–192 (1998). CASPubMed Google Scholar
Favier, B. et al. Localisation of members of the notch system and the differentiation of vibrissa hair follicles: receptors, ligands, and fringe modulators. Dev. Dyn.218, 426–437 (2000). CASPubMed Google Scholar
Lin, M. H., Leimeister, C., Gessler, M. & Kopan, R. Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development127, 2421–2432 (2000). CASPubMed Google Scholar
Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cell clusters. Curr. Biol.10, 491–500 (2000). CASPubMed Google Scholar
Sasaki, Y. et al. The p53 family member genes are involved in the Notch signal pathway. J. Biol. Chem.277, 719–724 (2002). CASPubMed Google Scholar
Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J.20, 3427–3436 (2001).This paper describes the conditional, inducible ablation ofNotch1in keratinocytes. It underscores the importance of Notch1 signalling in regulating epidermal differentiation. CASPubMedPubMed Central Google Scholar
Xia, X. et al. Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc. Natl Acad. Sci. USA11, 10863–10868 (2001). Google Scholar
Killick, R. et al. Presenilin 1 independently regulates β-catenin stability and transcriptional activity. J. Biol. Chem.276, 48554–48561 (2001). CASPubMed Google Scholar
Palacino, J. J. et al. Presenilin 1 regulates β-catenin-mediated transcription in a glycogen synthase kinase-3-independent fashion. J. Biol. Chem.276, 38563–38569 (2001). CASPubMed Google Scholar
Soriano, S. et al. Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and notch processing. J. Cell Biol.152, 785–794 (2001). CASPubMedPubMed Central Google Scholar
Ross, D. A. & Kadesch, T. The notch intracellular domain can function as a coactivator for lef-1. Mol. Cell. Biol.21, 7537–7544 (2001). CASPubMedPubMed Central Google Scholar
Fuchs, E., Merrill, B. J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell1, 13–25 (2001). CASPubMed Google Scholar
Altmann, C. R. & Brivanlou, A. H. Neural patterning in the vertebrate embryo. Int. Rev. Cytol.203, 447–482 (2001). CASPubMed Google Scholar
Wilson, S. I. et al. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature411, 325–330 (2001). CASPubMed Google Scholar
Tseng, H., Biegel, J. A. & Brown, R. S. Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes. J. Cell Sci.112, 3039–3047 (1999). CASPubMed Google Scholar
Maytin, E. V. et al. Keratin 10 gene expression during differentiation of mouse epidermis requires transcription factors C/EBP and AP-2. Dev. Biol.216, 164–181 (1999). CASPubMed Google Scholar
Faus, I., Hsu, H. J. & Fuchs, E. Oct-6: a regulator of keratinocyte gene expression in stratified squamous epithelia. Mol. Cell. Biol.14, 3263–3275 (1994). CASPubMedPubMed Central Google Scholar
Andersen, B. et al. Functions of the POU domain genes Skn-1a/i and Tst-1/Oct-6/SCIP in epidermal differentiation. Genes Dev.11, 1873–1884 (1997). CASPubMed Google Scholar
Oettgen, P. et al. Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J. Biol. Chem.274, 29439–29452 (1999). CASPubMed Google Scholar
Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genet.22, 356–360 (1999). CASPubMed Google Scholar
Li, M. et al. RXR-α ablation in skin keratinocytes results in alopecia and epidermal alterations. Development128, 675–688 (2001). CASPubMed Google Scholar
Li, Q. et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev.13, 1322–1328 (1999). CASPubMedPubMed Central Google Scholar
Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science284, 316–320 (1999). CASPubMed Google Scholar
Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science284, 313–316 (1999). CASPubMed Google Scholar
Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature410, 710–714 (2001).This paper showed that IKKα is involved in the production of a secreted factor that is crucial for terminal differentiation of mouse keratinocytes. CASPubMed Google Scholar
Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell5, 969–979 (2000). CASPubMed Google Scholar
Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell5, 981–992 (2000). CASPubMed Google Scholar
The International Incontinentia Pigmenti (IP) Consortium. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature405, 466–472 (2000).
Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA95, 2307–2312 (1998). CASPubMedPubMed Central Google Scholar
Fuchs, E. & Green, H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell25, 617–625 (1981). CASPubMed Google Scholar
Kopan, R., Traska, G. & Fuchs, E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol.105, 427–440 (1987). CASPubMed Google Scholar
Dolle, P. et al. Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature342, 702–705 (1989). CASPubMed Google Scholar
Xiao, J. H., Durand, B., Chambon, P. & Voorhees, J. J. Endogenous retinoic acid receptor (RAR)–retinoid X receptor (RXR) heterodimers are the major functional forms regulating retinoid-responsive elements in adult human keratinocytes. Binding of ligands to RAR only is sufficient for RAR–RXR heterodimers to confer ligand-dependent activation of hRARβ2/RARE (DR5). J. Biol. Chem.270, 3001–3011 (1995). CASPubMed Google Scholar
Imakado, S. et al. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev.9, 317–329 (1995). CASPubMed Google Scholar
Saitou, M. et al. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature374, 159–162 (1995). CASPubMed Google Scholar
Ahmad, W., Panteleyev, A. A., Sundberg, J. P. & Christiano, A. M. Molecular basis for the rhino (hrrh-8J) phenotype: a nonsense mutation in the mouse hairless gene. Genomics53, 383–386 (1998). CASPubMed Google Scholar
Leask, A., Rosenberg, M., Vassar, R. & Fuchs, E. Regulation of a human epidermal keratin gene: sequences and nuclear factors involved in keratinocyte-specific transcription. Genes Dev.4, 1985–1998 (1990). CASPubMed Google Scholar
Snape, A. M., Jonas, E. A. & Sargent, T. D. KTF-1, a transcriptional activator of Xenopus embryonic keratin expression. Development109, 157–165 (1990). CASPubMed Google Scholar
Leask, A., Byrne, C. & Fuchs, E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc. Natl Acad. Sci. USA88, 7948–7952 (1991). CASPubMedPubMed Central Google Scholar
Byrne, C., Tainsky, M. & Fuchs, E. Programming gene expression in developing epidermis. Development120, 2369–2383 (1994). CASPubMed Google Scholar
Casatorres, J., Navarro, J. M., Blessing, M. & Jorcano, J. L. Analysis of the control of expression and tissue specificity of the keratin 5 gene, characteristic of basal keratinocytes. Fundamental role of an AP-1 element. J. Biol. Chem.269, 20489–20496 (1994). CASPubMed Google Scholar
DiSepio, D. et al. The proximal promoter of the mouse loricrin gene contains a functional AP-1 element and directs keratinocyte-specific but not differentiation-specific expression. J. Biol. Chem.270, 10792–10799 (1995). CASPubMed Google Scholar
Jang, S. I., Steinert, P. M. & Markova, N. G. Activator protein 1 activity is involved in the regulation of the cell type-specific expression from the proximal promoter of the human profilaggrin gene. J. Biol. Chem.271, 24105–24114 (1996). CASPubMed Google Scholar
LaPres, J. J. & Hudson, L. G. Identification of a functional determinant of differentiation-dependent expression in the involucrin gene. J. Biol. Chem.271, 23154–23160 (1996). CASPubMed Google Scholar
Byrne, C. Regulation of gene expression in developing epidermal epithelia. Bioessays19, 691–698 (1997). CASPubMed Google Scholar
Sinha, S., Degenstein, L., Copenhaver, C. & Fuchs, E. Defining the regulatory factors required for epidermal gene expression. Mol. Cell. Biol.20, 2543–2555 (2000). CASPubMedPubMed Central Google Scholar
Sinha, S. & Fuchs, E. Identification and dissection of an enhancer controlling epithelial gene expression in skin. Proc. Natl Acad. Sci. USA98, 2455–2460 (2001). CASPubMedPubMed Central Google Scholar
Tomic-Canic, M., Komine, M., Freedberg, I. M. & Blumenberg, M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J. Dermatol. Sci.17, 167–181 (1998). CASPubMed Google Scholar
Efimova, T., LaCelle, P., Welter, J. F. & Eckert, R. L. Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J. Biol. Chem.273, 24387–24395 (1998). CASPubMed Google Scholar
Jochum, W., Passegue, E. & Wagner, E. F. AP-1 in mouse development and tumorigenesis. Oncogene20, 2401–2412 (2001). CASPubMed Google Scholar
Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-Jun is essential for normal mouse development and hepatogenesis. Nature365, 179–181 (1993). CASPubMed Google Scholar
Gruda, M. C. et al. Expression of FosB during mouse development: normal development of FosB knockout mice. Oncogene12, 2177–2185 (1996). CASPubMed Google Scholar
Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature381, 238–241 (1996). CASPubMed Google Scholar
Passegue, E., Jochum, W., Behrens, A., Ricci, R. & Wagner, E. F. JunB can substitute for Jun in mouse development and cell proliferation. Nature Genet. 2002 Jan 2; [epub ahead of print].
Green, K. J. & Gaudry, C. A. Are desmosomes more than tethers for intermediate filaments? Nature Rev. Mol. Cell Biol.1, 208–216 (2000). CAS Google Scholar
Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell100, 209–219 (2000). CASPubMed Google Scholar
Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol.3, 823–830 (2001). CASPubMed Google Scholar
Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science287, 1606–1609 (2000). CASPubMed Google Scholar
Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature359, 235–237 (1992). CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999).References87and88show the role of activating mutations in β-catenin and of members in the signalling cascade that are involved in the degradation of β-catenin, in the generation of tumours. CASPubMed Google Scholar
Shiozaki, H. et al. Immunohistochemical detection of α-catenin expression in human cancers. Am. J. Pathol.144, 667–674 (1994). CASPubMedPubMed Central Google Scholar
Schipper, J. H. et al. Expression of E-cadherin in skin carcinomas. J. Dermatol.23, 104–110 (1996). Google Scholar
Adams, C. L. & Nelson, W. J. Cytomechanics of cadherin-mediated cell–cell adhesion. Curr. Opin. Cell Biol.10, 572–577 (1998). CASPubMed Google Scholar
Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol.141, 779–789 (1998). CASPubMedPubMed Central Google Scholar
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell104, 605–617 (2001). CASPubMed Google Scholar
McGrath, J. A. et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nature Genet.17, 240–244 (1997). CASPubMed Google Scholar
Armstrong, D. K. et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet.8, 143–148 (1999). CASPubMed Google Scholar
DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1-Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol.137, 729–742 (1997). CASPubMedPubMed Central Google Scholar
Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J.19, 3990–4003 (2000). CASPubMedPubMed Central Google Scholar
Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol.150, 1149–1160 (2000). CASPubMedPubMed Central Google Scholar
Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol.134, 559–572 (1996). CASPubMed Google Scholar
Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet.13, 370–373 (1996). CASPubMed Google Scholar
Van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nature Genet.13, 366–369 (1996). CASPubMed Google Scholar
Borradori, L. & Sonnenberg, A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol.112, 411–418 (1999). CASPubMed Google Scholar
Christiano, A. M. & Uitto, J. Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa. Exp. Dermatol.5, 1–11 (1996). CASPubMed Google Scholar
Guo, L., Degenstein, L. & Fuchs, E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev.10, 165–175 (1996). CASPubMed Google Scholar
Andra, K. et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev.11, 3143–3156 (1997). CASPubMedPubMed Central Google Scholar
Khavari, P. A. Gene therapy for genetic skin disease. J. Invest. Dermatol.110, 462–467 (1998).This paper reviews the scope of gene therapy in treating debilitating human skin disorders. CASPubMed Google Scholar
Hansen, L. A. et al. The epidermal growth factor receptor is required to maintain the proliferative population in the basal compartment of epidermal tumors. Cancer Res.60, 3328–3332 (2000). CASPubMed Google Scholar
DiPersio, C. M. et al. α3β1 and α6β4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J. Cell Sci.113, 3051–3062 (2000). CASPubMed Google Scholar
Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell103, 745–755 (2000). CASPubMed Google Scholar
Huffman, J. A., Hull, W. M., Dranoff, G., Mulligan, R. C. & Whitsett, J. A. Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J. Clin. Invest.97, 649–655 (1996). CASPubMedPubMed Central Google Scholar
Metcalf, D. et al. The biological consequences of excess GM-CSF levels in transgenic mice also lacking high-affinity receptors for GM-CSF. Leukemia12, 353–362 (1998). CASPubMed Google Scholar
Reynolds, A. J. & Jahoda, C. A. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development122, 3085–3094 (1996). CASPubMed Google Scholar
Suzuki, K. et al. Defective terminal differentiation and hypoplasia of the epidermis in mice lacking the Fgf10 gene. FEBS Lett.481, 53–56 (2000). CASPubMed Google Scholar
Luetteke, N. C. et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev.8, 399–413 (1994). CASPubMed Google Scholar
Miettinen, P. J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature376, 337–341 (1995). CASPubMed Google Scholar
Sibilia, M. & Wagner, E. F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science269, 234–238 (1995). CASPubMed Google Scholar
Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science269, 230–234 (1995). CASPubMed Google Scholar
Hansen, L. A. et al. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am. J. Pathol.150, 1959–1975 (1997). CASPubMedPubMed Central Google Scholar
Bailleul, B. et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell62, 697–708 (1990). CASPubMed Google Scholar
Wang, X. J., Greenhalgh, D. A., Eckhardt, J. N., Rothnagel, J. A. & Roop, D. R. Epidermal expression of transforming growth factor-α in transgenic mice: induction of spontaneous and 12-_O_-tetradecanoylphorbol-13-acetate-induced papillomas via a mechanism independent of Ha-ras activation or overexpression. Mol. Carcinog.10, 15–22 (1994). PubMed Google Scholar
Woodworth, C. D., Gaiotti, D., Michael, E., Hansen, L. & Nees, M. Targeted disruption of the epidermal growth factor receptor inhibits development of papillomas and carcinomas from human papillomavirus-immortalized keratinocytes. Cancer Res.60, 4397–4402 (2000). CASPubMed Google Scholar
Sibilia, M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell102, 211–220 (2000). CASPubMed Google Scholar
Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell104, 9–19 (2001). CASPubMed Google Scholar
Sano, S. et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J.18, 4657–4668 (1999). CASPubMedPubMed Central Google Scholar
Vasioukhin, V. & Fuchs, E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol.13, 76–84 (2001). CASPubMed Google Scholar