Coordinating early kidney development: lessons from gene targeting (original) (raw)
Saxén, L. Organogenesis of the kidney 1–173 (Cambridge Univ. Press, Cambridge, UK, 1987). Book Google Scholar
Sariola, H. Nephron induction revisited: from caps to condensates. Curr. Opin. Nephrol. Hypertens.11, 17–21 (2002). ArticlePubMed Google Scholar
Woolf, A. S. & Loughna, S. Origin of glomerular capillaries: is the verdict in? Exp. Nephrol.6, 17–21 (1998). ArticleCASPubMed Google Scholar
Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell106, 319–329 (2001). ArticleCASPubMed Google Scholar
Davies, R. et al. Multiple roles for the Wilms' tumor suppressor, WT1. Cancer Res.59, 1747s–1750s (1999). CASPubMed Google Scholar
Vilain, E. & McCabe, E. R. Mammalian sex determination: from gonads to brain. Mol. Genet. Metab.65, 74–84 (1998). ArticleCASPubMed Google Scholar
Parker, K. L., Schedl, A. & Schimmer, B. P. Gene interactions in gonadal development. Annu. Rev. Physiol.61, 417–433 (1999). ArticleCASPubMed Google Scholar
Kreidberg, J. A. et al. WT1 is required for early kidney development. Cell74, 679–691 (1993). ArticleCASPubMed Google Scholar
Lee, S. B. et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell98, 663–673 (1999). ArticleCASPubMed Google Scholar
Ryan, G., Steele-Perkins, V., Morris, J. F., Rauscher, F. J. & Dressler, G. R. Repression of Pax-2 by WT1 during normal kidney development. Development121, 867–875 (1995). CASPubMed Google Scholar
Donovan, M, et al. Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev. Genet.24, 252–262 (1999). ArticleCASPubMed Google Scholar
Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development128, 4747–4756 (2001).Shows that Pax2 might participate in the initiation of kidney development by controlling ureteric-bud formation by Gdnf. CASPubMed Google Scholar
Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature382, 76–79 (1996). ArticleCASPubMed Google Scholar
Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature382, 70–73 (1996). ArticleCASPubMed Google Scholar
Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature382, 73–76 (1996). ArticleCASPubMed Google Scholar
Pepicelli, C. V., Kispert, A., Rowitch, D. H. & McMahon, A. P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol.192, 193–198 (1997). ArticleCASPubMed Google Scholar
Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development124, 4077–4087 (1997). CASPubMed Google Scholar
Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genet.23, 113–117 (1999). ArticleCASPubMed Google Scholar
Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nature Genet.15, 157–614 (1997). ArticleCASPubMed Google Scholar
Nishinakamura, R. et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development128, 3105–3115 (2001). CASPubMed Google Scholar
Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development127, 1387–1395 (2000).Reports that theFoxcgenes are important in controlling where kidney development occurs, possibly by controllingGdnfexpression. CASPubMed Google Scholar
Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev. Neurosci.3, 383–394 (2002). ArticleCAS Google Scholar
Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development119, 1005–1017 (1993). CASPubMed Google Scholar
Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature367, 380–383 (1994).In this study, the inactivation ofRetrevealed its essential role in early kidney development. ArticleCASPubMed Google Scholar
Durbec, P. et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature381, 789–793 (1996). ArticleCASPubMed Google Scholar
Vega, Q. C., Worby, C. A., Lechner, M. S., Dixon, J. E. & Dressler, G. R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA93, 10657–10661 (1996). ArticleCASPubMedPubMed Central Google Scholar
Enomoto, H. et al. GFR α1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron21, 317–324 (1998). ArticleCASPubMed Google Scholar
de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev.15, 2433–2444 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tang, M. J., Worley, D., Sanicola, M. & Dressler, G. R. The RET-glial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. J. Cell Biol.142, 1337–1345 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tang, M. J., Cai, Y., Tsai, S. J., Wang, Y. K. & Dressler, G. R. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev. Biol.243, 128–136 (2002). ArticleCASPubMed Google Scholar
Sakurai, H., Bush, K. T. & Nigam, S. K. Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development128, 3283–3293 (2001). CASPubMed Google Scholar
Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B. L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest.105, 863–873 (2000). ArticleCASPubMedPubMed Central Google Scholar
Raatikainen-Ahokas, A., Hytonen, M., Tenhunen, A., Sainio, K. & Sariola, H. BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev. Dyn.217, 146–158 (2000). ArticleCASPubMed Google Scholar
Perrimon, N. & Bernfield, M. Cellular functions of proteoglycans – an overview. Semin. Cell Dev. Biol.12, 65–67 (2001). ArticleCASPubMed Google Scholar
Selleck, S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet.16, 206–212 (2000). ArticleCASPubMed Google Scholar
Davies, J., Lyon, M., Gallagher, J. & Garrod, D. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development121, 1507–1517 (1995). CASPubMed Google Scholar
Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev.12, 1894–1906 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O. & Kimata, K. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J. Biol. Chem.272, 13980–13985 (1997). ArticleCASPubMed Google Scholar
Kispert, A., Vainio, S., Shen, L., Rowitch, D. H. & McMahon, A. P. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development122, 3627–3637 (1996). CASPubMed Google Scholar
Merry, C. L. et al. The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J. Biol. Chem.276, 35429–35434 (2001). ArticleCASPubMed Google Scholar
Cano-Gauci, D. F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J. Cell Biol.146, 255–264 (1999). CASPubMedPubMed Central Google Scholar
Grisaru, S. & Rosenblum, N. D. Glypicans and the biology of renal malformations. Pediatr. Nephrol.16, 302–306 (2001). ArticleCASPubMed Google Scholar
Grisaru, S., Cano-Gauci, D., Tee, J., Filmus, J. & Rosenblum, N. D. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev. Biol.231, 31–46 (2001). ArticleCASPubMed Google Scholar
Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem.68, 729–777 (1999). ArticleCASPubMed Google Scholar
Karumanchi, S. A. et al. Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell7, 811–822 (2001). ArticleCASPubMed Google Scholar
O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell88, 277–285 (1997). ArticleCASPubMed Google Scholar
Lin, Y. et al. Induced repatterning of type XVIII collagen expression in ureter bud from kidney to lung type: association with sonic hedgehog and ectopic surfactant protein C. Development128, 1573–1585 (2001). CASPubMed Google Scholar
Karihaloo, A. et al. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc. Natl Acad. Sci. USA98, 12509–12514 (2001). ArticleCASPubMedPubMed Central Google Scholar
Clark, A. T. & Bertram, J. F. Molecular regulation of nephron endowment. Am. J. Physiol.276, F485–F497 (1999). CASPubMed Google Scholar
Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development124, 1653–1664 (1997). CASPubMed Google Scholar
Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev.11, 547–553 (2001). ArticleCASPubMed Google Scholar
Yamaguchi, T. P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol.11, R713–R724 (2001). ArticleCASPubMed Google Scholar
Herzlinger, D., Qiao, J., Cohen, D., Ramakrishna, N. & Brown, A. M. Induction of kidney epithelial morphogenesis by cells expressing Wnt-1. Dev. Biol.166, 815–818 (1994).The first demonstration that Wnt signalling might be important in kidney-tubule induction and is sufficient to induce kidney tubulesin vitro. ArticleCASPubMed Google Scholar
Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature372, 679–683 (1994).The first paper to demonstrate the essential role of Wnt signals in nephrogenesis. ArticleCASPubMed Google Scholar
Vainio, S. J. & Uusitalo, M. S. A road to kidney tubules via the Wnt pathway. Pediatr. Nephrol.15, 151–156 (2000). ArticleCASPubMed Google Scholar
McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development128, 491–502 (2001). CASPubMed Google Scholar
Kispert, A., Vainio, S. & McMahon, A. P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development125, 4225–4234 (1998).This study demonstrated that Wnt4 signalling is important in inducing nephrogenesisin vitro. CASPubMed Google Scholar
Itäranta, P. et al. Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis32, 259–268 (2002). ArticlePubMedCAS Google Scholar
Stark, M. R. et al. Frizzled-4 expression during chick kidney development. Mech. Dev.98, 121–125 (2000). ArticleCASPubMed Google Scholar
Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell88, 747–756 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lescher, B., Haenig, B. & Kispert, A. sFRP-2 is a target of the Wnt-4 signaling pathway in the developing metanephric kidney. Dev. Dyn.213, 440–451 (1998). ArticleCASPubMed Google Scholar
Yoshino, K. et al. Secreted Frizzled-related proteins can regulate metanephric development. Mech. Dev.102, 45–55 (2001). ArticleCASPubMed Google Scholar
Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell67, 901–908 (1991). ArticleCASPubMed Google Scholar
Sudarsan, V., Pasalodos-Sanchez, S., Wan, S., Gampel, A. & Skaer, H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development129, 935–944 (2002). CASPubMed Google Scholar
Ainsworth, C., Wan, S. & Skaer, H. Coordinating cell fate and morphogenesis in Drosophila renal tubules. Philos. Trans. R. Soc. Lond. B Biol. Sci.355, 931–937 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hogan, B. L. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev.6, 432–438 (1996). ArticleCASPubMed Google Scholar
Dudley, A. T. & Robertson, E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn.208, 349–362 (1997). ArticleCASPubMed Google Scholar
Dudley, A. T., Lyons, K. M. & Robertson, E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev.9, 2795–2807 (1995). ArticleCASPubMed Google Scholar
Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev.9, 2808–2820 (1995). ArticleCASPubMed Google Scholar
Reddi, A. H. Bone morphogenetic proteins and skeletal development: the kidney–bone connection. Pediatr. Nephrol.14, 598–601 (2000). ArticleCASPubMed Google Scholar
Al-Awqati, Q. & Oliver, J. A. Stem cells in the kidney. Kidney Int.61, 387–395 (2002). ArticlePubMed Google Scholar
Dudley, A. T., Godin, R. E. & Robertson, E. J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev.13, 1601–1613 (1999).Reports that the nephrogenic zone and stromal zone might exchange signals and regulate kidney development. ArticleCASPubMedPubMed Central Google Scholar
Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev.10, 1467–1478 (1996).This knockout of Bf2 indicates that the stromal cells are essential for kidney development. ArticleCASPubMed Google Scholar
Mendelsohn, C., Batourina, E., Fung, S., Gilbert, T. & Dodd, J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development126, 1139–1148 (1999). CASPubMed Google Scholar
Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nature Genet.27, 74–78 (2001).Reports that Ret can rescue the kidney defect inRarα/Rarβ double-knockout embryos, indicating that stromal cells might signal to regulate ureteric-bud activity. ArticleCASPubMed Google Scholar
Qiao, J. et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development126, 547–554 (1999). CASPubMed Google Scholar
Kawakami, Y. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell104, 891–900 (2001). ArticleCASPubMed Google Scholar
Lin, Y. et al. Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev. Dyn.222, 26–39 (2001). ArticleCASPubMed Google Scholar
Serluca, F. C. & Fishman, M. C. Pre-pattern in the pronephric kidney field of zebrafish. Development128, 2233–2241 (2001). CASPubMed Google Scholar
Drummond, I. A. et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development125, 4655–4667 (1998). CASPubMed Google Scholar
Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science294, 564–567 (2001). ArticleCASPubMed Google Scholar
Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science294, 559–563 (2001). ArticleCASPubMed Google Scholar
Stuart, R. O., Bush, K. T. & Nigam, S. K. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc. Natl Acad. Sci. USA98, 5649–5654 (2001). ArticleCASPubMedPubMed Central Google Scholar
Valerius, M. T., Patterson, L. T., Witte, D. P. & Potter, S. S. Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mech. Dev.112, 219–232 (2002). ArticleCASPubMed Google Scholar