Animal models of nonalcoholic fatty liver disease (original) (raw)
Cheung, O. & Sanyal, A. J. Recent advances in nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol.26, 202–208 (2010). PubMed Google Scholar
Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc.55, 434–438 (1980). CASPubMed Google Scholar
Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med.348, 1625–1638 (2003). PubMed Google Scholar
Veldt, B. J. et al. Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. Hepatology47, 1856–1862 (2008). PubMed Google Scholar
Chen, C. L. et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology135, 111–121 (2008). CASPubMed Google Scholar
Wieckowska, A. & Feldstein, A. E. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin. Liver Dis.28, 386–395 (2008). CASPubMed Google Scholar
Tiniakos, D. G., Vos, M. B. & Brunt, E. M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol.5, 145–171 (2010). CASPubMed Google Scholar
Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A. & Bacon, B. R. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol.94, 2467–2474 (1999). CASPubMed Google Scholar
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology41, 1313–1321 (2005). PubMed Google Scholar
[No authors listed] Alcoholic liver disease: morphological manifestation. Review by an international group. Lancet317, 707–711 (1981).
Lefkowitch, J. H. Morphology of alcoholic liver disease. Clin. Liver Dis.9, 37–53 (2005). PubMed Google Scholar
Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology116, 1413–1419 (1999). CASPubMed Google Scholar
Stumptner, C., Fuchsbichler, A., Heid, H., Zatloukal, K. & Denk, H. Mallory body—a disease-associated type of sequestosome. Hepatology35, 1053–1062 (2002). CASPubMed Google Scholar
Brunt, E. M. Histopathology of non-alcoholic fatty liver disease. Clin. Liver Dis.13, 533–544 (2009). PubMed Google Scholar
Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol.53, 372–384 (2010). PubMed Google Scholar
Day, C. P. & Saksena, S. Non-alcoholic steatohepatitis: definitions and pathogenesis. J. Gastroenterol. Hepatol17 (Suppl. 3), S377–S384 (2002). PubMed Google Scholar
Marra, F., Gastaldelli, A., Svegliati Baroni, G., Tell, G. & Tiribelli, C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med.14, 72–81 (2008). CASPubMed Google Scholar
Pan, M. et al. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J. Clin. Invest.113, 1277–1287 (2004). CASPubMedPubMed Central Google Scholar
Feldstein, A. E. et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology40, 185–194 (2004). CASPubMed Google Scholar
Wueest, S. et al. Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice. J. Clin. Invest.120, 191–202 (2010). CASPubMed Google Scholar
Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol.87, 1–16 (2006). CASPubMedPubMed Central Google Scholar
Rinella, M. E. & Green, R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol.40, 47–51 (2004). CASPubMed Google Scholar
Rinella, M. E. et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J. Lipid Res.49, 1068–1076 (2008). CASPubMedPubMed Central Google Scholar
Weltman, M. D., Farrell, G. C. & Liddle, C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology111, 1645–1653 (1996). CASPubMed Google Scholar
Leclercq, I. A. et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest.105, 1067–1075 (2000). CASPubMedPubMed Central Google Scholar
Ip, E. et al. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology38, 123–132 (2003). CASPubMed Google Scholar
George, J. et al. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J. Hepatol.39, 756–764 (2003). CASPubMed Google Scholar
Phung, N. et al. Pro-oxidant-mediated hepatic fibrosis and effects of antioxidant intervention in murine dietary steatohepatitis. Int. J. Mol. Med.24, 171–180 (2009). CASPubMed Google Scholar
Ip, E., Farrell, G., Hall, P., Robertson, G. & Leclercq, I. Administration of the potent PPARalpha agonist, Wy-14643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology39, 1286–1296 (2004). CASPubMed Google Scholar
Leclercq, I. A., Farrell, G. C., Sempoux, C., dela Pena, A. & Horsmans, Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J. Hepatol.41, 926–934 (2004). CASPubMed Google Scholar
Dela Pena, A. et al. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology129, 1663–1674 (2005). CASPubMed Google Scholar
Yu, J. et al. COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator. Hepatology43, 826–836 (2006). CASPubMed Google Scholar
McCuskey, R. S. et al. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology40, 386–393 (2004). PubMed Google Scholar
Larter, C. Z., Yeh, M. M., Williams, J., Bell-Anderson, K. S. & Farrell, G. C. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J. Hepatol.49, 407–416 (2008). CASPubMed Google Scholar
Leclercq, I. A., Lebrun, V. A., Starkel, P. & Horsmans, Y. J. Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone. Lab. Invest.87, 56–65 (2007). CASPubMed Google Scholar
Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol.536, 182–191 (2006). CASPubMed Google Scholar
Schattenberg, J. M., Wang, Y., Singh, R., Rigoli, R. M. & Czaja, M. J. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J. Biol. Chem.280, 9887–9894 (2005). CASPubMed Google Scholar
Schattenberg, J. M. et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology43, 163–172 (2006). CASPubMed Google Scholar
Nakae, D. Endogenous liver carcinogenesis in the rat. Pathol. Int.49, 1028–1042 (1999). CASPubMed Google Scholar
Nakae, D. et al. Comparative changes in the liver of female Fischer-344 rats after short-term feeding of a semipurified or a semisynthetic L-amino acid-defined choline-deficient diet. Toxicol. Pathol.23, 583–590 (1995). CASPubMed Google Scholar
Kodama, Y. et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology137, 1467–1477 (2009). CASPubMed Google Scholar
Lieber, C. S. et al. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr.79, 502–509 (2004). CASPubMed Google Scholar
Deng, Q. G. et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology42, 905–914 (2005). CASPubMed Google Scholar
Zou, Y. et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci.79, 1100–1107 (2006). CASPubMed Google Scholar
Baumgardner, J. N., Shankar, K., Hennings, L., Badger, T. M. & Ronis, M. J. A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am. J. Physiol. Gastrointest. Liver Physiol.294, G27–G38 (2008). CASPubMed Google Scholar
Gami, A. S. et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol.49, 403–414 (2007). CASPubMed Google Scholar
Kim, J. K. et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J. Clin. Invest.105, 1791–1797 (2000). CASPubMedPubMed Central Google Scholar
Jornayvaz, F. R., Samuel, V. T. & Shulman, G. I. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu. Rev. Nutr.30, 273–290 (2010). CASPubMedPubMed Central Google Scholar
Jeong, W.-I. et al. Mild hepatic fibrosis in cholesterol and sodium cholate diet-fed rats. J. Vet. Med. Sci.67, 235–242 (2005). CASPubMed Google Scholar
Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis57, 65–73 (1985). CASPubMed Google Scholar
Vergnes, L., Phan, J., Strauss, M., Tafuri, S. & Reue, K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J. Biol. Chem.278, 42774–42784 (2003). CASPubMed Google Scholar
Wouters, K. et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology48, 474–486 (2008). PubMed Google Scholar
Mari, M. et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab.4, 185–198 (2006). CASPubMed Google Scholar
Matsuzawa, N. et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology46, 1392–1403 (2007). CASPubMed Google Scholar
Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol.48, 993–999 (2008). CASPubMedPubMed Central Google Scholar
Abdelmalek, M. F. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology51, 1961–1971 (2010). CASPubMed Google Scholar
Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J. M. & Lustig, R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol.7, 251–264 (2010). CASPubMed Google Scholar
Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology50, 1094–1104 (2009). CASPubMed Google Scholar
Bergheim, I. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol.48, 983–992 (2008). CASPubMed Google Scholar
Tetri, L. H., Basaranoglu, M., Brunt, E. M., Yerian, L. M. & Neuschwander-Tetri, B. A. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol.295, G987–G995 (2008). CASPubMedPubMed Central Google Scholar
Wada, T. et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology151, 2040–2049 (2010). CASPubMed Google Scholar
Obara, N. et al. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J. Hepatol.53, 326–334 (2010). CASPubMed Google Scholar
Ogawa, T., Fujii, H., Yoshizato, K. & Kawada, N. A human-type nonalcoholic steatohepatitis model with advanced fibrosis in rabbits. Am. J. Pathol.177, 153–165 (2010). CASPubMedPubMed Central Google Scholar
London, R. M. & George, J. Pathogenesis of NASH: animal models. Clin. Liver Dis.11, 55–74 (2007). PubMed Google Scholar
Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest.118, 829–838 (2008). CASPubMedPubMed Central Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). CASPubMedPubMed Central Google Scholar
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med.15, 930–939 (2009). CASPubMedPubMed Central Google Scholar
Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med.15, 914–920 (2009). CASPubMed Google Scholar
Greenberg, A. S. & Obin, M. S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr.83, 461S–465S (2006). CASPubMed Google Scholar
Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology125, 1796–1807 (2003). CASPubMed Google Scholar
Kamada, Y. et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J. Hepatol.47, 556–564 (2007). CASPubMed Google Scholar
Asano, T. et al. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J. Gastroenterol. Hepatol.24, 1669–1676 (2009). CASPubMed Google Scholar
Uji, Y. et al. Adiponectin deficiency promotes the production of inflammatory mediators while severely exacerbating hepatic injury in mice with polymicrobial sepsis. J. Surg. Res.161, 301–311 (2010). CASPubMed Google Scholar
Ohashi, K. et al. Adiponectin promotes macrophage polarization towards an anti-inflammatory phenotype. J. Biol. Chem.285, 6153–6160 (2010). CASPubMed Google Scholar
Tomita, K. et al. Hepatic AdipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice. Hepatology48, 458–473 (2008). CASPubMed Google Scholar
Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science329, 454–457 (2010). CASPubMedPubMed Central Google Scholar
Alkhouri, N. et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem.285, 3428–3438 (2010). CASPubMed Google Scholar
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell140, 197–208 (2010). CASPubMedPubMed Central Google Scholar
Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med.11, 183–190 (2005). CASPubMedPubMed Central Google Scholar
Luedde, T. et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell11, 119–132 (2007). CASPubMed Google Scholar
Wunderlich, F. T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl Acad. Sci. USA105, 1297–1302 (2008). CASPubMedPubMed Central Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). CASPubMed Google Scholar
Shiri-Sverdlov, R. et al. Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. J. Hepatol.44, 732–741 (2006). CASPubMed Google Scholar
Bieghs, V. et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology138, 2477–2486 (2010). CASPubMed Google Scholar
Bie, J., Zhao, B., Song, J. & Ghosh, S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J. Biol. Chem.285, 13630–13637 (2010). CASPubMedPubMed Central Google Scholar
Li, T. et al. Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology52, 678–690 (2010). CASPubMed Google Scholar
Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology48, 322–335 (2008). CASPubMed Google Scholar
Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology139, 323–334 (2010). CASPubMed Google Scholar
Velayudham, A. et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology49, 989–997 (2009). CASPubMed Google Scholar
Petersen, K. F. et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc. Natl Acad. Sci. USA103, 18273–18277 (2006). CASPubMedPubMed Central Google Scholar
Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet.40, 1461–1465 (2008). CASPubMedPubMed Central Google Scholar
He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem.285, 6706–6715 (2010). CASPubMed Google Scholar
Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology52, 1134–1142 (2010). CASPubMed Google Scholar
Browning, J. D., Cohen, J. C. & Hobbs, H. H. Patatin-like phospholipase domain-containing 3 and the pathogenesis and progression of pediatric nonalcoholic fatty liver disease. Hepatology52, 1189–1192 (2010). CASPubMed Google Scholar
Petersen, K. F. et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N. Engl. J. Med.362, 1082–1089 (2010). CASPubMedPubMed Central Google Scholar
Salerno, A. G. et al. Overexpression of apolipoprotein CIII increases and CETP reverses diet-induced obesity in transgenic mice. Int. J. Obes. (Lond.)31, 1586–1595 (2007). CAS Google Scholar
Ito, Y., Azrolan, N., O'Connell, A., Walsh, A. & Breslow, J. L. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science249, 790–793 (1990). CASPubMed Google Scholar
Korenblat, K. M., Fabbrini, E., Mohammed, B. S. & Klein, S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology134, 1369–1375 (2008). CASPubMed Google Scholar