The biliary tree—a reservoir of multipotent stem cells (original) (raw)
Roskams, T. A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology39, 1739–1745 (2004). PubMed Google Scholar
Alvaro, D. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology132, 415–431 (2007). CASPubMed Google Scholar
Xia, X., Francis, H., Glaser, S., Alpini, G. & LeSage, G. BIle acid interactions with cholangiocytes. World J. Gastroenterol.12, 3553–3563 (2006). CASPubMedPubMed Central Google Scholar
Marzioni, M. et al. Ca2+ dependent cytoprotective effects of ursodeoxycholic and tauroursodexycholic acid on the biliary epithelium in a rat model of cholestatis and loss of bile ducts. Am. J. Pathol.168, 398–409 (2006). CASPubMedPubMed Central Google Scholar
Ueno, Y. et al. Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int.23, 449–459 (2003). CASPubMed Google Scholar
LeSage, G. D. et al. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am. J. Physiol.276, G1289–G1301 (1999). CASPubMed Google Scholar
Nakanuma, Y., Hoso, M., Sanzen, T. & Sasaki, M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc. Res. Tech.38, 552–570 (1997). CASPubMed Google Scholar
Alpini, G. et al. Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. Am. J. Physiol.272, G289–G297 (1997). CASPubMed Google Scholar
Glaser, S. S. et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab. Invest.89, 456–469 (2009). CASPubMedPubMed Central Google Scholar
Wilson, J. W. & Leduc, E. H. Role of cholangioles in restoration of the liver of the mouse after dietary injury. J. Pathol. Bacteriol.76, 441–449 (1958). CASPubMed Google Scholar
De Alwis, N., Hudson, G., Burt, A. D., Day, C. P. & Chinnery, P. F. Human liver stem cells originate from the canals of Hering. Hepatology50, 992–993 (2009). PubMed Google Scholar
Navarro-Alvarez, N., Soto-Gutierrez, A. & Kobayashi, N. Hepatic stem cells and liver development. Method Mol. BIol.640, 181–236 (2010). CAS Google Scholar
Saxena, R., Theise, N. D. & Crawford, J. M. Microanatomy of the human liver—exploring the hidden interfaces. Hepatology30, 1339–1346 (1999). CASPubMed Google Scholar
Saxena, R. & Theise, N. Canals of Hering: recent insights and current knowledge. Semin. Liver Dis.24, 43–48 (2004). PubMed Google Scholar
Turner, R. et al. Hepatic stem cells and maturational liver lineage biology. Hepatology53, 1035–1045 (2011). CASPubMed Google Scholar
Schmelzer, E. et al. Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med.204, 1973–1987 (2007). CASPubMedPubMed Central Google Scholar
Lozoya, O. A. et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials32, 7389–7402 (2011). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Lineage restriction of hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology53, 293–305 (2011). CASPubMed Google Scholar
Wang, Y. et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology52, 1443–1454 (2010). PubMed Google Scholar
McClelland, R., Wauthier, E., Tallheden, T., Reid, L. M. & Hsu, E. In situ labeling and magnetic resonance imaging of transplanted human hepatic stem cells. Mol. Imaging Biol.13, 911–922 (2011). PubMedPubMed Central Google Scholar
Alpini, G. et al. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology34, 868–876 (2001). CASPubMed Google Scholar
LeSage, E. G. et al. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology117, 191–199 (1999). CASPubMed Google Scholar
Glaser, S. et al. Heterogeneity of the intrahepatic biliary epithelium. World J. Gastroenterol.12, 3523–3536 (2006). CASPubMedPubMed Central Google Scholar
Alpini, G. et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology110, 1636–1643 (1996). CASPubMed Google Scholar
Mancinelli, R. et al. Novel evidence for CaMK1-dependent differentiation of small cholangiocytes into functional large cholangiocytes following gamma aminobutyric acid (GABA) treatment. Gastroenterology136, A-800 (2009). Google Scholar
Zhang, L., Theise, N., Chua, M. & Reid, L. M. The stem cell niche of human livers: symmetry between liver development and liver regeneration. Hepatology48, 1598–1607 (2008). CASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). CASPubMed Google Scholar
Schmelzer, E. & Reid, L. M. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. Eur. J.Gastroenterol. Hepatol.21, 1191–1198 (2009). CASPubMedPubMed Central Google Scholar
Schmelzer, E., Wauthier, E. & Reid, L. M. The phenotypes of pluripotent human hepatic progenitors. Stem Cells24, 1852–1858 (2006). CASPubMed Google Scholar
Kubota, H. & Reid, L. M. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigens. Proc. Natl Acad. Sci. USA97, 12132–12137 (2000). CASPubMedPubMed Central Google Scholar
Cardinale, V. et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes and pancreatic islets. Hepatology54, 2159–2172 (2011). CASPubMed Google Scholar
Shin, S. et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev.25, 1185–1192 (2011). CASPubMedPubMed Central Google Scholar
Yang, L. et al. In vitro transdifferentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA99, 8078–8083 (2002). CASPubMedPubMed Central Google Scholar
Kuver, R., Savard, C. E., Lee, S. K., Haigh, W. G. & Lee, S. P. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. Am. J. Physiol. Gastrointest. Liver Physiol.293, G944–G955 (2007). CASPubMed Google Scholar
Aikawa, M. et al. Regeneration of extrahepatic bile duct--possibility to clinical application by recognition of the regenerative process. J. Smooth Muscle Res.43, 211–218 (2007). PubMed Google Scholar
Eberhard, D., Tosha, D. & Slack, J. M. Origin of pancreatic endocrine cells from biliary duct epithelium. Cell. Mol. Life Sci.65, 3467–3480 (2008). CASPubMed Google Scholar
Spence, J. R. et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells Dev. Cell17, 62–74 (2009). CASPubMedPubMed Central Google Scholar
Chen, C. S. et al. Characterization of an in vitro differentiation assay for pancreatic-like cell development from murine embryonic stem cells: detailed gene expression analysis. Assay Drug Dev. Technol.9, 403–419 (2011). CASPubMedPubMed Central Google Scholar
Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet.43, 34–41 (2011). CASPubMed Google Scholar
Turner, W. S. et al. Human hepatoblast phenotype maintained by hyaluronan hydrogels. J. Biomed. Mater. Res. B Appl. Biomater.82, 156–168 (2007). PubMed Google Scholar
Turner, W. S. et al. Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells26, 1547–1555 (2008). CASPubMed Google Scholar
Dor, Y., Brown, J., Martinez, O. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature429, 41–46 (2004). CASPubMed Google Scholar
Bonner-Weir, S. et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr. Diabetes5, 16–22 (2004). PubMed Google Scholar
Strobel, O. et al. Pancreatic duct glands are distinct ductal compartments that react to chronic Injury and mediate Shh-induced metaplasia. Gastroenterology138, 1166–1177 (2010). PubMed Google Scholar
Smukler, S. R. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell8, 281–293 (2011). CASPubMed Google Scholar
Zhao, M. et al. Evidence for the presence of stem cell-like progenitor cells in human adult pancreas. J. Endocrinol.195, 407–414 (2007). CASPubMed Google Scholar
Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol.22, 1115–1124 (2004). CASPubMed Google Scholar
Carpino, G. et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J. Anat.220, 186–199 (2011). PubMedPubMed Central Google Scholar
Tan, C. E. & Moscoso, G. J. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Pathol. Int.44, 600–610 (1994). CASPubMed Google Scholar
Rochefort, N. L. & Konnerth, A. Genetically encoded calcium sensors come of age. Nat. Methods5, 761–762 (2008). CASPubMed Google Scholar
Beloussov, L. V. & Gordon, R. Preface: Developmental morphodynamics—bridging the gap between the genome and embryo physics. Int. J. Dev. Biol.50, 79–80 (2006). Google Scholar
Terada, T. & Nakanuma, Y. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses. Lab. Invest.68, 261–269 (1993). CASPubMed Google Scholar
Terada, T., Kida, T. & Nakanuma, Y. Extrahepatic peribiliary glands express α-amylase isozymes, trypsin and pancreatic lipase: an immunohistochemical analysis. Hepatology18, 803–808 (1993). CASPubMed Google Scholar
Terada, T. & Nakanuma, Y. Pancreatic lipase is a useful phenotypic marker of intrahepatic large and septal bile ducts, peribiliary glands, and their malignant counterparts. Mod. Pathol.6, 419–426 (1993). CASPubMed Google Scholar
Katayanagi, K., Kono, N. & Nakanuma, Y. Isloation, culture and characterization of biliary epithelial cells from different anatomical levels of the intrahepatic and extrahepatic biliary tree from a mouse. Liver18, 90–98 (1998). CASPubMed Google Scholar
Nakanuma, Y., Katayanagi, K., Terada, T. & Saito, K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J. Gastroenterol. Hepatol.9, 75–79 (1994). CASPubMed Google Scholar
Terada, T. & Nakanuma, Y. Expression of pancreatic enzymes (α-amylase, trypsinogen, and lipase) during human liver development and maturation. Gastroenterology108, 1236–1245 (1995). CASPubMed Google Scholar
Song, S. Y. et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor α. Gastroenterology117, 1416–1426 (1999). CASPubMed Google Scholar
Nakanuma, Y., Sasaki, M., Terada, T. & Harada, K. Intrahepatic peribiliary glands of humans. II. Pathological spectrum. J. Gastroenterolol. Hepatol.9, 80–86 (1994). CAS Google Scholar
Wandzioch, E. & Zaret, K. S. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science324, 1707–1710 (2009). CASPubMedPubMed Central Google Scholar
Johnson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371, 606–609 (1994). Google Scholar
Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development122, 983–995 (1996). CASPubMed Google Scholar
Dutton, J. R. et al. β cells occur naturally in extrahepatic bile ducts of mice. J. Cell Sci.120, 239–245 (2007). CASPubMed Google Scholar
Youson, J. H. & Al-Mahrouki, A. Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fish. Gen. Comp. Endocrinol.116, 303–335 (1999). CASPubMed Google Scholar
Fukuda, A. et al. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest.116, 1484–1493 (2006). CASPubMedPubMed Central Google Scholar
Lammert, E., Brown, J. & Melton, D. A. Notch gene expression during pancreatic organogenesis. Mech. Dev.94, 199–203 (2000). CASPubMed Google Scholar
Kim, W., Shin, Y. K., Kim, B. J. & Egan, J. M. Notch signaling in pancreatic endocrine cell and diabetes. Biochem. Biophys. Res. Commun.392, 247–251, (2010). CASPubMed Google Scholar
Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev.6, 2620–2634 (1992). CASPubMed Google Scholar
Sumazaki, R. et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet.36, 83–87 (2004). CASPubMed Google Scholar
Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA97, 1607–1611 (2000). CASPubMedPubMed Central Google Scholar
Terada, T., Kato, M., Horie, S., Endo, K. & Kitamura, Y. Expression of panceratic α-amylase protein and messenger RNA in hilar primitive bile ducts and hepatocytes during human fetal liver organogenesis: an immunohistochemical and in situ hybridization study. Liver18, 313–319 (1998). CASPubMed Google Scholar
Antoniou, A. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology136, 2325–2333 (2009). PubMed Google Scholar
Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology141, 1432–1438 (2011). CASPubMed Google Scholar
Khan, A. A. et al. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant.19, 409–418 (2010). PubMed Google Scholar
Wolf, H. K., Burchette Jr, J. L., Garcia, J. A. & Michalopoulos, G. Exocrine pancreatic tissue in human liver: a metaplastic process? Am. J. Surg. Pathol.14, 590–595 (1990). CASPubMed Google Scholar
Clouston, A. D. et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology41, 809–818 (2005). CASPubMed Google Scholar
Kuwahara, R. et al. The hepatic stem cell niche: identification by label retaining cell assay. Hepatology47, 1994–2002 (2008). PubMed Google Scholar
Alvaro, D., Gigliozzi, A. & Attili, A. F. Regulation and deregulation of cholangiocyte proliferation. J. Hepatol.33, 333–340 (2000). CASPubMed Google Scholar
Roskams, T. A., Libbrecht, L. & Desmet, V. J. Progenitor cells in diseased human liver. Semin. Liver Dis.23, 385–396 (2003). CASPubMed Google Scholar
Miyatsuka, T. et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun.310, 1017–1025 (2003). CASPubMed Google Scholar
Habener, J. F., Kemp, D. M. & Thomas, M. K. Minireview: transcriptional regulation in pancreatic development. Endocrinology146, 1025–1034 (2005). CASPubMed Google Scholar
Drucker, D. J. Glucagon-like peptides, regulators of cell proliferation, differentiation and apoptosis. Mol. Endocrinol.17, 161–171 (2003). CASPubMed Google Scholar
Delise, J. C. et al. Pdx-1 or Pdx-1-VP16 protein transduction induces β-cell expression in liver-stem WB cells. BMC Res. Notes2, 3 (2009). Google Scholar
Yechoor, V. et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev. Cell16, 358–373 (2009). CASPubMedPubMed Central Google Scholar
Kurumaya, H., Ohta, G. & Nakanuma, Y. Endocrine cells in the intrahepatic biliary tree in normal livers and hepatolithiasis. Arch. Pathol. Lab. Med.113, 143–147 (1989). CASPubMed Google Scholar
Bahadir, B. et al. Ectopic pancreas associated with choledochal cyst and multiseptate gallbladder. Pediatr. Dev. Pathol.9, 312–315 (2006). PubMed Google Scholar
Hoang, M. P., Murakata, L. A., Padilla-Rodriguez, A. L. & Albores-Saavedra, J. Metaplastic lesions of the extrahepatic bile ducts: a morphologic and immunohistochemical study. Mod. Pathol.14, 1119–1125 (2001). CASPubMed Google Scholar
Terada, T. & Nakanuma, Y. Pathologic observations of intrahepatic peribiliary glands in 1,000 consecutive autopsy livers: IV. hyperplasia of intramural and extramural glands. Hum. Pathol.23, 483–490 (1992). CASPubMed Google Scholar
Fujioka, Y. et al. Multiple hilar cysts of the liver in patients with alcoholic cirrhosis: report of three cases. J. Gastroenterol. Hepatol.12, 137–143 (1997). CASPubMed Google Scholar
Meng, F. et al. Role of colony stimulating factors in biliary remodeling during liver regeneration. Hepatology55, 209–221 (2011). Google Scholar
Woo, H. G., Park, E. S., Thorgeirsson, S. S. & Kim, Y. J. Exploring genomic profiles of hepatocellular carcinoma. Mol. Carcinog.50, 235–243 (2011). CASPubMedPubMed Central Google Scholar
Woo, H. G. et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology140, 1063–1070 (2011). CASPubMed Google Scholar
Ji, J. et al. Identification of a conserved microRNA-181 family by genome-wide screening as a critical player in hepatic cancer stem cells. Hepatology50, 472–480 (2009). CASPubMed Google Scholar
Yamashita, Y. et al. Wnt/β-catenin signaling regulates cancer initiating cells (EpCAM+ AFP+) with stem cell features and metastatic activities in hepatocellular carcinoma. Gastroenterology136, 1012–1024 (2009). CASPubMed Google Scholar
Hughes, N. R., Pairojkul, C., Royce, S. G., Clouston, A. & Bhathal, P. S. Liver fluke-associated and sporadic cholangiocarcinoma: an immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J. Clin. Pathol.59, 1073–1078 (2006). CASPubMedPubMed Central Google Scholar
Roskams, T. et al. Parathyroid hormone-related peptide expression in primary and metastatic liver tumors. Histopathology23, 519–525 (1993). CASPubMed Google Scholar
Komuta, M. et al. Clinicopathological study on cholangiocellular carcinoma suggesting hepatic progenitor cell origins. Hepatology47, 1544–1556 (2008). CASPubMed Google Scholar
Christa, L. et al. Hepatocarcinoma-intestine-pancreas/pancreatic associated protein (HIP/PAP) is expressed and secreted by proliferating ductules as well as by hepatocarcinoma and cholangiocarcinoma cells. Am. J. Pathol.155, 1525–1533 (1999). CASPubMedPubMed Central Google Scholar
Roskams, T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene25, 3818–3822 (2006). CASPubMed Google Scholar
Nakanuma, Y. et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol.2, 419–427 (2010). PubMedPubMed Central Google Scholar
Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol.26, 443–452 (2008). CASPubMed Google Scholar
Bonner-Weir, S. & Weir, G. C. New sources of pancreatic β cells. Nat. Biotechnol.23, 857–861 (2005). CASPubMed Google Scholar
Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev.44, 3–16 (1993). CASPubMed Google Scholar
Burke, Z. & Oliver, G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech. Dev.118, 147–155 (2002). CASPubMed Google Scholar
Wang, J. et al. Prox1 activity controls pancreas morphogenesis and participates in the production of 'secondary transition' pancreatic endocrine cells. Dev. Biol.286, 182–194 (2005). CASPubMed Google Scholar
de Santa Barbera, P., van den Brink, G. R. & Roberts, D. J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci.60, 1322–1332 (2003). Google Scholar
Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development121, 3163–3174 (1995). CASPubMed Google Scholar
Roberts, D. J., Smith, D. M., Goff, D. J. & Tabin, C. J. Epithelial–mesenchymal signaling during regionalization of the chick gut. Development125, 2791–2801 (1998). CASPubMed Google Scholar
Kim, S. K. & Melton D. A. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl Acad. Sci. USA95, 13036–13041 (1998). CASPubMedPubMed Central Google Scholar
Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiaion in the intestine and pancreas. Curr. Biol.7, 801–804 (1997). CASPubMed Google Scholar
Cirullie, V. et al. Antigen Ep-CAM mediates cell–cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development. J. Cell Biol.140, 1519–1534 (1998). Google Scholar
Hayes, A. et al. Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem.56, 125–138 (2008). CASPubMedPubMed Central Google Scholar
Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science322, 1490–1494 (2008). CASPubMedPubMed Central Google Scholar
Couvelard, A. et al. Expression of integrins during liver organogenesis in humans. Hepatology27, 839–847 (1998). CASPubMed Google Scholar