- Rabinovitch, M. Professional and non-professional phagocytes, an introduction. Trends Cell Biol. 5, 85–87 (1995).
Article CAS Google Scholar
- Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).
Article CAS Google Scholar
- May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).
CAS PubMed Google Scholar
- Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).
Article CAS Google Scholar
- Massol, P., Montcourrier, P., Guillemot, J. C. & Chavrier, P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J. 17, 6219–6229 (1998).
Article CAS Google Scholar
- Patel, J. C., Hall, A. & Caron, E. Vav regulates activation of Rac but not Cdc42 during FcγR-mediated phagocytosis. Mol. Biol. Cell 13, 1215–1226 (2002).
Article CAS Google Scholar
- Lowry, M. B., Duchemin, A. M., Robinson, J. M. & Anderson, C. L. Functional separation of pseudopod extension and particle internalization during Fcγ receptor-mediated phagocytosis. J. Exp. Med. 187, 161–176 (1998).
Article CAS Google Scholar
- Aggeler, J. & Werb, Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol. 94, 613–623 (1982).
Article CAS Google Scholar
- Gold, E. S. et al. Amphiphysin Iim, a novel amphiphysin II isoform, is required for macrophage phagocytosis. Immunity 12, 285–292 (2000).
Article CAS Google Scholar
- Tse, S. M. et al. Differential role of actin, clathrin and dynamin in Fcγ receptor-mediated endocytosis and phagocytosis. J. Biol. Chem. 278, 3331–3338 (2003).
Article CAS Google Scholar
- Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000). This study used an elegant approach to show the rapid remodelling of the membranes that are used during phagocytosis.
Article CAS Google Scholar
- Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644 (2001).
Article CAS Google Scholar
- Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).
Article CAS Google Scholar
- Araki, N., Johnson, M. T. & Swanson, J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol. 135, 1249–1260 (1996). The first demonstration of the role of phosphatidylinositol 3-kinase in phagocytosis.
Article CAS Google Scholar
- Cox, D., Tseng, C. C., Bjekic, G. & Greenberg, S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (1999).
Article CAS Google Scholar
- Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002). This study challenges the current model of phagocytosis by showing the direct involvement, at the cell surface, of the endoplasmic reticulum during phagosome formation.
Article CAS Google Scholar
- Werb, Z. & Cohn, Z. A. Plasma-membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J. Biol. Chem. 247, 2439–2446 (1972).
CAS PubMed Google Scholar
- Muller, W. A., Steinman, R. M. & Cohn, Z. A. The membrane proteins of the vacuolar system. II. Bidirectional flow between secondary lysosomes and plasma membrane. J. Cell Biol. 86, 304–314 (1980).
Article CAS Google Scholar
- Vicker, M. G. On the origin of the phagocytic membrane. Exp. Cell Res. 109, 127–138 (1977).
Article CAS Google Scholar
- Cannon, G. J. & Swanson, J. A. The macrophage capacity for phagocytosis. J. Cell Sci. 101, 907–913 (1992).
PubMed Google Scholar
- Holevinsky, K. O. & Nelson, D. J. Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys. J. 75, 2577–2586 (1998).
Article CAS Google Scholar
- Hackam, D. J. et al. v-SNARE-dependent secretion is required for phagocytosis. Proc. Natl Acad. Sci. USA 95, 11691–11696 (1998).
Article CAS Google Scholar
- Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149, 697–706 (2000).
Article CAS Google Scholar
- Tardieux, I. et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130 (1992). The is the first demonstration that an intracellular organelle could be used to supply membrane for phagosome formation during phagocytosis.
Article CAS Google Scholar
- Cougoule, C., Constant, P., Etienne, G., Daffe, M. & Maridonneau-Parini, I. Lack of fusion of azurophil granules with phagosomes during phagocytosis of Mycobacterium smegmatis by human neutrophils is not actively controlled by the bacterium. Infect. Immun. 70, 1591–1598 (2002).
Article CAS Google Scholar
- Méresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life or death. Nature Cell Biol. 1, E183–E188 (1999).
Article Google Scholar
- Burkhardt, J. et al. Gaining insight into a complex organelle, the phagosome, using two-dimensional gel electrophoresis. Electrophoresis 16, 2249–2257 (1995).
Article CAS Google Scholar
- Morrissette, N. S. et al. Isolation and characterization of monoclonal antibodies directed against novel components of macrophage phagosomes. J. Cell Sci. 112, 4705–4713 (1999).
CAS PubMed Google Scholar
- Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002). An interesting use of the RNA-interference approach to identify new proteins involved in phagocytosis.
Article CAS Google Scholar
- Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001). This study is the first global characterization of a complex intracellular organelle by a proteomic approach. Several new characteristics and functions for phagosomes are proposed.
Article CAS Google Scholar
- Bickel, P. E. et al. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272, 13793–13802 (1997).
Article CAS Google Scholar
- Dermine, J. F. et al. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512.
Article CAS Google Scholar
- Desjardins, M. Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. Trends Cell Biol. 5, 183–186 (1995).
CAS PubMed Google Scholar
- Desjardins, M., Huber, L. A., Parton, R. G. & Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124, 677–688 (1994). This study indicated that phagolysosome biogenesis is a maturation process involving sequential interaction with endocytic organelles through transient fusion events ('kiss and run').
Article CAS Google Scholar
- Desjardins, M. et al. Molecular characterization of phagosomes. J. Biol. Chem. 269, 32194–32200 (1994).
CAS PubMed Google Scholar
- Pizon, V., Desjardins, M., Bucci, C., Parton, R. G. & Zerial, M. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J. Cell Sci. 107, 1661–1670 (1994).
CAS PubMed Google Scholar
- Desjardins, M., Nzala, N. N., Corsini, R. & Rondeau, C. Maturation of phagosomes is accompanied by changes in their fusion properties and size-selective acquisition of solute materials from endosomes. J. Cell Sci. 110, 2303–2314 (1997).
CAS PubMed Google Scholar
- Duclos, S. et al. Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J. Cell Sci. 113, 3531–3541 (2000).
CAS PubMed Google Scholar
- Duclos, S., Corsini, S. & Desjardins, M. Remodeling of endosomes during lysosomes biogenesis involves 'kiss and run' fusion events regulated by rab5. J. Cell Sci. 116, 907–918 (2003).
Article CAS Google Scholar
- Berthiaume, E. P., Medina, C. & Swanson, J. A. Molecular size-fractionation during endocytosis in macrophages. J. Cell Biol. 129, 989–998 (1995).
Article CAS Google Scholar
- Burgoyne, R. D., Fisher, R. J. & Graham, M. E. Regulation of kiss-and-run exocytosis. Trends Cell Biol. 11, 404–405 (2001).
Article CAS Google Scholar
- Nanavati, C., Markin, V. S., Oberhauser, A. F. & Fernandez, J. M. The exocytotic fusion pore modeled as a lipidic pore. Biophys. J. 63, 1118–1132 (1992).
Article CAS Google Scholar
- Roberts, R. L. et al. Endosome fusion in living cells overexpressing GFP–rab5. J. Cell Sci. 112, 3667–3675 (1999).
CAS PubMed Google Scholar
- McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).
Article CAS Google Scholar
- Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).
Article CAS Google Scholar
- Müller-Taubenberger, A. et al. Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J. 20, 6772–6782 (2001). An elegant study showing the potential involvement of endoplasmic-reticulum (ER) molecules during phagocytosis.
Article Google Scholar
- McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000). A systematic characterization of the pairs of SNARE molecules that are required for the specificity of membrane-fusion events. A fusogenic pair indicates that ER–plasma-membrane fusion could occur.
Article CAS Google Scholar
- Okazaki, Y., Ohno, H., Takase, K., Ochiai, T. & Saito, T. Cell-surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J. Biol. Chem. 275, 35751–35758 (2000).
Article CAS Google Scholar
- Johnson, S., Michalak, M., Opas, M. & Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 11, 122–129 (2001).
Article CAS Google Scholar
- Kakimura, J., Kitamura, Y., Taniguchi, T., Shimohama, S. & Gebicke-Haerter, P. J. Bip/GRP78-induced production of cytokines and uptake of amyloid-β (1–42) peptide in microglia. Biochem. Biophys. Res. Commun. 281, 6–10 (2001).
Article CAS Google Scholar
- Ogden, C. A. et al. C1q and mannose-binding lectin engagement of cell-surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).
Article CAS Google Scholar
- Olafson, R. W. et al. Structures of the N-linked oligosaccharides of Gp63, the major surface glycoprotein, from Leishmania mexicana amazonensis. J. Biol. Chem. 265, 12240–12247 (1990).
CAS PubMed Google Scholar
- Schrag, J. D. et al. The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644 (2001).
Article CAS Google Scholar
- Shibahara, S., Muller, R., Tagushi, H. & Yoshida, T. Cloning and expression of cDNA for heme oxygenase. Proc. Natl Acad. Sci. USA 82, 7865–7869 (1985).
Article CAS Google Scholar
- Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T-cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).
Article CAS Google Scholar
- Ramachandra, L., Song, R. & Harding, C. V. Phagosomes are fully competent antigen-processing organelles that mediate the formation of peptide:class II MHC complexes. J. Immunol. 162, 3263–3272 (1999).
CAS PubMed Google Scholar
- Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).
Article CAS Google Scholar
- Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999).
Article CAS Google Scholar
- Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic-cell activation. J. Exp. Med. 196, 529–540 (2002).
Article CAS Google Scholar
- Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).
Article CAS Google Scholar
- Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002).
Article CAS Google Scholar
- McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin and ATP. J. Cell Biol. 132, 291–298 (1996).
Article CAS Google Scholar
- Lindquist, J. A., Jensen, O. N., Mann, M. & Hammerling, G. J. ER-60, a chaperone with thiol-dependent reductase activity is involved in MHC class I assembly. EMBO J. 17, 2186–2195 (1998).
Article CAS Google Scholar
- Diedrich, G., Bangia, N., Pan, M. & Cresswell, P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol. 166, 1703–1709 (2001).
Article CAS Google Scholar
- Pizarro-Cerdá, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of non-professional phagocytes. Infect. Immun. 66, 5711–5724 (1998).
PubMed PubMed Central Google Scholar
- Horwitz, M. A. Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med. 158, 1319–1331 (1983). This article describes a new process of phagocytosis used to internalize a new pathogen.
Article CAS Google Scholar
- Swanson, M. S. & Isberg, R. R. Association of Legionella pneumophilia with the macrophage endoplasmic reticulum. Infect. Immun. 63, 3609–3620 (1995).
CAS PubMed PubMed Central Google Scholar
- Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G. & Roy, C. R. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114, 4637–4650 (2001).
CAS PubMed Google Scholar
- Katz, S. M. & Hashemi, S. Electron microscopic examination of the inflammatory response to Legionella pneumophila in guinea pigs. Lab. Invest. 46, 24–32 (1982).
CAS PubMed Google Scholar
- Laufs, H. et al. Intracellular survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect. Immun. 70, 826–835 (2002).
Article CAS Google Scholar
- Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).
Article CAS Google Scholar
- Anderson, T. D. & Cheville, N. F. Ultrastructural morphometric analysis of _Brucella abortus_-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Am. J. Pathol. 124, 226–237 (1986).
CAS PubMed PubMed Central Google Scholar
- Heinzen, R. A., Scidmore, M. A., Rockey, D. D. & Hackstadt, T. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64, 796–809 (1996).
CAS PubMed PubMed Central Google Scholar
- Desjardins, M. & Descoteaux, A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med. 185, 2061–2068 (1997).
Article CAS Google Scholar
- Dermine, J. F., Scianimanico, S., Prive, C., Descoteaux, A. & Desjardins, M. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell. Microbiol. 2, 115–126 (2000).
Article CAS Google Scholar
- Scianimanico, S. et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell. Microbiol. 1, 19–32 (1999).
Article CAS Google Scholar
- Via, L. E. et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272, 13326–13331 (1997).
Article CAS Google Scholar
- Rupper, A., Grove, B. & Cardelli, J. Rab7 regulates phagosome maturation in Dictyostelium. J. Cell Sci. 114, 2449–2460 (2001).
CAS PubMed Google Scholar
- Vandivier, R. W. et al. Role of surfactant proteins A, D and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002).
Article CAS Google Scholar