Making sense of mass destruction: quantitating MHC class I antigen presentation (original) (raw)
Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature384, 134–141 (1996). CASPubMed Google Scholar
Garcia, K. C. et al. An αβ T cell receptor structure at 2. 5 Å and its orientation in the TCR–MHC complex. Science274, 209–219 (1996). ArticleCASPubMed Google Scholar
Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature351, 290–296 (1991). CASPubMed Google Scholar
Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78, 761–771 (1994). CASPubMed Google Scholar
Reits, E. A., Benham, A. M., Plougastel, B., Neefjes, J. & Trowsdale, J. Dynamics of proteasome distribution in living cells. EMBO J.16, 6087–6094 (1997). CASPubMedPubMed Central Google Scholar
Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem.274, 3363–3371 (1999). This paper identifies the peptides that are generated by the proteasome underin vitroconditions. Only a small fraction of all peptides that are released by the proteasomes can bind directly with high affinity to MHC class I molecules. A marked fraction of peptides are too short for transport by transporter for antigen processing (TAP) and binding to MHC class I molecules. CASPubMed Google Scholar
Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity18, 97–108 (2003). This report describes the fate of peptides in living cells. Using bleaching techniques, it is shown that peptides associate with chromatin. However, peptides have to leave the nucleus to contact TAP and are rapidly degraded in the cytoplasm by resident peptidases. As a result, more than 99% will not reach TAP for translocation into the endoplasmic reticulum (ER). CASPubMed Google Scholar
Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature419, 480–483 (2002). CASPubMed Google Scholar
Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nature Immunol.3, 1169–1176 (2002). CAS Google Scholar
Neefjes, J. J., Momburg, F. & Hammerling, G. J. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science261, 769–771 (1993). CASPubMed Google Scholar
van Endert, P. M., Saveanu, L., Hewitt, E. W. & Lehner, P. Powering the peptide pump: TAP crosstalk with energetic nucleotides. Trends Biochem. Sci.27, 454–461 (2002). CASPubMed Google Scholar
Ortmann, B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I–TAP complexes. Science277, 1306–1309 (1997). CASPubMed Google Scholar
Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nature Immunol.1, 234–238 (2000). CAS Google Scholar
Dick, T. P., Bangia, N., Peaper, D. R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I–peptide complexes. Immunity16, 87–98 (2002). CASPubMed Google Scholar
Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L. & Goldberg, A. L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J.20, 2357–2366 (2001). CASPubMedPubMed Central Google Scholar
Momburg, F., Roelse, J., Hammerling, G. J. & Neefjes, J. J. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med.179, 1613–1623 (1994). CASPubMed Google Scholar
Neisig, A., Wubbolts, R., Zang, X., Melief, C. & Neefjes, J. Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J. Immunol.156, 3196–3206 (1996). CASPubMed Google Scholar
Zweerink, H. J. et al. Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells. J. Immunol.150, 1763–1771 (1993). CASPubMed Google Scholar
Wei, M. L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature356, 443–446 (1992). CASPubMed Google Scholar
Williams, D. B., Swiedler, S. J. & Hart, G. W. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol.101, 725–734 (1985). CASPubMed Google Scholar
Neefjes, J. J. & Ploegh, H. L. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with β2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur. J. Immunol.18, 801–810 (1988). CASPubMed Google Scholar
Lammert, E., Stevanovic, S., Brunner, J., Rammensee, H. G. & Schild, H. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum. Eur. J. Immunol.27, 1685–1690 (1997). CASPubMed Google Scholar
Spee, P. & Neefjes, J. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur. J. Immunol.27, 2441–2449 (1997). CASPubMed Google Scholar
Koopmann, J. O. et al. Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity13, 117–127 (2000). CASPubMed Google Scholar
Roelse, J., Gromme, M., Momburg, F., Hammerling, G. & Neefjes, J. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J. Exp. Med.180, 1591–1597 (1994). CASPubMed Google Scholar
Seifert, U. et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nature Immunol.4, 375–379 (2003). CAS Google Scholar
Glas, R., Bogyo, M., McMaster, J. S., Gaczynska, M. & Ploegh, H. L. A proteolytic system that compensates for loss of proteasome function. Nature392, 618–622 (1998). CASPubMed Google Scholar
Princiotta, M. F. et al. Cells adapted to the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival. Proc. Natl Acad. Sci. USA98, 513–518 (2001). CASPubMedPubMed Central Google Scholar
Gromme, M. et al. Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl Acad. Sci. USA96, 10326–10331 (1999). CASPubMedPubMed Central Google Scholar
Kleijmeer, M. J. et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic2, 124–137 (2001). CASPubMed Google Scholar
Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol.10, 429–439 (2000). CASPubMed Google Scholar
Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev.82, 373–428 (2002). CASPubMed Google Scholar
Navon, A. & Goldberg, A. L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell8, 1339–1349 (2001). CASPubMed Google Scholar
Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell11, 69–78 (2003). ArticleCASPubMed Google Scholar
Ogura, T. & Tanaka, K. Dissecting various ATP-dependent steps involved in proteasomal degradation. Mol. Cell11, 3–5 (2003). CASPubMed Google Scholar
Kloetzel, P. M. Antigen processing by the proteasome. Nature Rev. Mol. Cell Biol.2, 179–187 (2001). CAS Google Scholar
York, I. A. et al. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity18, 429–440 (2003). This paper, together with reference 39, provides examples of various peptidases that either generate or destroy peptides for MHC class I antigen presentation. This depends on peptide size and sequence. CASPubMed Google Scholar
Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nature Immunol.1, 413–418 (2000). CAS Google Scholar
York, I. A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nature Immunol.3, 1177–1184 (2002). CAS Google Scholar
Neisig, A. et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J. Immunol.154, 1273–1279 (1995). CASPubMed Google Scholar
De Plaen, E. et al. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum-antigen P91A and identification of the tum-mutation. Proc. Natl Acad. Sci. USA85, 2274–2278 (1988). CASPubMedPubMed Central Google Scholar
Schwab, S. R., Li, K. C., Kang, C. & Shastri, N. Constitutive display of cryptic translation products by MHC class I molecules. Science301, 1367–1371 (2003). CASPubMed Google Scholar
Yewdell, J. W., Anton, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol.157, 1823–1826 (1996). The first paper to describe the concept of defective ribosomal products (DRiPs). CASPubMed Google Scholar
Bach, I. & Ostendorff, H. P. Orchestrating nuclear functions: ubiquitin sets the rhythm. Trends Biochem. Sci.28, 189–195 (2003). CASPubMed Google Scholar
Jackson, P. K. & Eldridge, A. G. The SCF ubiquitin ligase: an extended look. Mol. Cell9, 923–925 (2002). CASPubMed Google Scholar
Schimke, R. T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem.39, 929–976 (1970). CASPubMed Google Scholar
Goldberg, A. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem.45, 747–803 (1976). CASPubMed Google Scholar
Yewdell, J. W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol.11, 294–297 (2001). CASPubMed Google Scholar
Yewdell, J. W., Schubert, U. & Bennink, J. R. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J. Cell Sci.114, 845–851 (2001). CASPubMed Google Scholar
Esquivel, F., Yewdell, J. & Bennink, J. RMA/S cells present endogenously synthesized cytosolic proteins to class I-restricted cytotoxic T lymphocytes. J. Exp. Med.175, 163–168 (1992). CASPubMed Google Scholar
Khan, S. et al. Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol.167, 4801–4804 (2001). References 51, 52 and 56 provide biochemical, cell biological and immunological evidence for the DRiP hypothesis. They imply that protein generation is tightly linked to antigen presentation by MHC class I molecules. CASPubMed Google Scholar
Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature404, 774–778 (2000). CASPubMed Google Scholar
Schild, H. & Rammensee, H. G. Perfect use of imperfection. Nature404, 709–710 (2000). CASPubMed Google Scholar
Wheatley, D. N. & Inglis, M. S. Turnover of nascent proteins in HeLa-S3 cells and the quasi-linear incorporation kinetics of amino acids. Cell Biol. Int. Rep.9, 463–470 (1985). CASPubMed Google Scholar
Wheatley, D. N. Protein turnover in relation to growth status and the cell cycle in cultured mammalian cells. Revis. Biol. Cellular21, 377–400 (1989). CAS Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774 (2000). CASPubMed Google Scholar
Turner, G. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science289, 2117–2120 (2000). CASPubMed Google Scholar
Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135 (1995). CASPubMed Google Scholar
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell83, 121–127 (1995). CASPubMed Google Scholar
Pareek, S. et al. Neurons promote the translocation of peripheral myelin protein 22 into myelin. J. Neurosci.17, 7754–7762 (1997). CASPubMedPubMed Central Google Scholar
Notterpek, L., Ryan, M. C., Tobler, A. R. & Shooter, E. M. PMP22 accumulation in aggresomes: implications for CMT1A pathology. Neurobiol. Dis.6, 450–460 (1999). CASPubMed Google Scholar
Siffroi-Fernandez, S., Giraud, A., Lanet, J. & Franc, J. L. Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Efects on the maturation of the receptor. Eur. J. Biochem.269, 4930–4937 (2002). CASPubMed Google Scholar
Petaja-Repo, U. E. et al. Newly synthesized human δ-opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J. Biol. Chem.276, 4416–4423 (2001). CASPubMed Google Scholar
Yedidia, Y., Horonchik, L., Tzaban, S., Yanai, A. & Taraboulos, A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J.20, 5383–5391 (2001). CASPubMedPubMed Central Google Scholar
Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem.278, 21732–21743 (2003). CASPubMed Google Scholar
Princiotta, M. F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity18, 343–354 (2003). This paper shows the full quantification of the steps between protein synthesis and MHC class I antigen presentation. It visualizes the impact of DRiPs on MHC class-I-associated peptides. CASPubMed Google Scholar
Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell114, 511–520 (2003). CASPubMed Google Scholar
Verma, R. & Deshaies, R. J. A proteasome howdunit: the case of the missing signal. Cell101, 341–344 (2000). CASPubMed Google Scholar
Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol.18, 538–543 (2000). CAS Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). CASPubMed Google Scholar
Falk, K., Rotzschke, O. & Rammensee, H. G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature348, 248–251 (1990). CASPubMed Google Scholar
Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. & Germain, R. N. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity6, 715–726 (1997). CASPubMed Google Scholar
Benham, A. M. & Neefjes, J. J. Proteasome activity limits the assembly of MHC class I molecules after IFN-γ stimulation. J. Immunol.159, 5896–5904 (1997). CASPubMed Google Scholar
Anton, L. C. et al. Dissociation of proteasomal degradation of biosynthesized viral proteins from generation of MHC class I-associated antigenic peptides. J. Immunol.160, 4859–4868 (1998). CASPubMed Google Scholar
Ben-Shahar, S. et al. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J. Biol. Chem.274, 21963–21972 (1999). CASPubMed Google Scholar
Fruci, D. et al. Quantifying recruitment of cytosolic peptides for HLA class I presentation: impact of TAP transport. J. Immunol.170, 2977–2984 (2003). CASPubMed Google Scholar
Villanueva, M. S., Fischer, P., Feen, K. & Pamer, E. G. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity1, 479–489 (1994). CASPubMed Google Scholar
Guermonprez, P. et al. ER–phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature425, 397–402 (2003). CASPubMed Google Scholar
Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature425, 402–406 (2003). CASPubMed Google Scholar
Denkberg, G. et al. Direct visualization of distinct T cell epitopes derived from a melanoma tumor-associated antigen by using human recombinant antibodies with MHC-restricted T cell receptor-like specificity. Proc. Natl Acad. Sci. USA99, 9421–9426 (2002). CASPubMedPubMed Central Google Scholar
Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R. & Wiley, D. C. Identification of self peptides bound to purified HLA-B27. Nature353, 326–329 (1991). CASPubMed Google Scholar
Admon, A., Barnea, E. & Ziv, T. Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol. Cell. Proteomics2, 388–398 (2003). CASPubMed Google Scholar
Turzynski, A. & Mentlein, R. Prolyl aminopeptidase from rat brain and kidney. Action on peptides and identification as leucyl aminopeptidase. Eur. J. Biochem.190, 509–515 (1990). CASPubMed Google Scholar
Beninga, J., Rock, K. L. & Goldberg, A. L. Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem.273, 18734–18742 (1998). CASPubMed Google Scholar
Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science283, 978–981 (1999). CASPubMed Google Scholar
Macpherson, E., Tomkinson, B., Balow, R. M., Hoglund, S. & Zetterqvist, O. Supramolecular structure of tripeptidyl peptidase II from human erythrocytes as studied by electron microscopy, and its correlation to enzyme activity. Biochem. J.248, 259–263 (1987). CASPubMedPubMed Central Google Scholar
Tomkinson, B. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci.24, 355–359 (1999). CASPubMed Google Scholar
Saric, T. et al. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J. Biol. Chem.276, 36474–36481 (2001). CASPubMed Google Scholar
Bromme, D., Rossi, A. B., Smeekens, S. P., Anderson, D. C. & Payan, D. G. Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization. Biochemistry35, 6706–6714 (1996). CASPubMed Google Scholar
Johnson, G. D. & Hersh, L. B. Studies on the subsite specificity of the rat brain puromycin-sensitive aminopeptidase. Arch. Biochem. Biophys.276, 305–309 (1990). CASPubMed Google Scholar
Gakamsky, D. M., Davis, D. M., Strominger, J. L. & Pecht, I. Assembly and dissociation of human leukocyte antigen (HLA)-A2 studied by real-time fluorescence resonance energy transfer. Biochemistry39, 11163–11169 (2000). CASPubMed Google Scholar
Thulasiraman, V., Yang, C. F. & Frydman, J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J.18, 85–95 (1999). CASPubMedPubMed Central Google Scholar