Pollard, P. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003). This review summarizes the present knowledge on actin polymerization and updates early concepts. CASPubMed Google Scholar
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol.13, 83–117 (1997). CASPubMed Google Scholar
Job, D., Valiron, O. & Oakley, B. Microtubule nucleation. Curr. Opin. Cell Biol.15, 111–117 (2003). CASPubMed Google Scholar
Nédélec, F., Surrey, T. & Karsenti, E. Self-organization and forces in the microtubule cytoskeleton. Curr. Opin. Cell Biol.15, 118–124 (2003). PubMed Google Scholar
Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science279, 514–519 (1998). CASPubMed Google Scholar
Brown, M. J., Hallam, J. A., Colucci-Guyon, E. & Shaw, S. Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol.166, 6640–6646 (2001). CASPubMed Google Scholar
Brown, M. J., Hallam, J. A., Liu, Y., Yamada, K. M. & Shaw, S. Integration of human T lymphocyte cytoskeleton by the cytolinker plectin. J. Immunol.167, 641–645 (2001). CASPubMed Google Scholar
McEver, R. P. Selectins: lectins that initiate adhesion under flow. Curr. Opin. Cell Biol.14, 581–586 (2002). CASPubMed Google Scholar
Pavalko, F. M. et al. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via α-actinin: receptor positioning in microvilli does not require interaction with α-actinin. J. Cell Biol.129, 1155–1164 (1995). CASPubMed Google Scholar
Ivetic, A., Deka, J., Ridley, A. J. & Ager, A. The cytoplasmic tail of L-selectin interacts with members of the Ezrin–Radixin–Moesin (ERM) family of proteins: cell activation-dependent binding of moesin but not ezrin. J. Biol. Chem.277, 2321–2329 (2002). CASPubMed Google Scholar
McEver, R. P. & Cummings, R. D. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest.100, 97–103 (1997). Google Scholar
Urzainqui, A. et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity17, 401–412 (2002). CASPubMed Google Scholar
Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial structure for adherent leukocytes. J. Cell Biol.157, 1233–1245 (2002). This paper describes the active role of endothelial cells during leukocyte firm adhesion, building an adhesion-receptor-based, actin-dependent docking structure to promote transmigration. CASPubMedPubMed Central Google Scholar
Brakebusch, C. & Fässler, R. The integrin-actin connection, an eternal love affair. EMBO J.22, 2324–2333 (2003). An updated review of integrin connections to the cytoskeleton; it provides a road map for such interactions. CASPubMedPubMed Central Google Scholar
Lub, M., van Kooyk, Y., van Vliet, S. J. & Figdor, C. G. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function associated antigen-1. Mol. Biol. Cell8, 341–351 (1997). CASPubMedPubMed Central Google Scholar
Stewart, M. P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol.140, 699–707 (1998). CASPubMedPubMed Central Google Scholar
Luscinskas, F. W., Ma, S., Nusrat, A., Parkos, C. A. & Shaw, S. K. Leukocyte transendothelial migration: a junctional affair. Semin. Immunol.14, 105–113 (2002). CASPubMed Google Scholar
Moazzam, F., DeLano, F. A., Zweifach, B. W. & Schmid-Schonbein, G. W. The leukocyte response to shear stress. Proc. Natl Acad. Sci. USA94, 5338–5343 (1997). CASPubMedPubMed Central Google Scholar
Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol.2, 515–522 (2001). This paper shows that shear stress is required for leukocyte transmigration, as well as immobilized chemokines, but not chemokine gradients, which questionsin vitromodels studying transmigration. CAS Google Scholar
Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J.21, 6791–6800 (2002). CASPubMedPubMed Central Google Scholar
Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol.147, 1009–1022 (1999). CASPubMedPubMed Central Google Scholar
Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity16, 1–4 (2002). CASPubMed Google Scholar
Horuk, R. Chemokine receptors. Cytokine Growth Factor Rev.12, 313–335 (2001). CASPubMed Google Scholar
Hur, E. M. & Kim, K. T. G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell. Signal.14, 397–405 (2002). CASPubMed Google Scholar
Matsumura, F., Ono, S., Yamakita, Y., Totsukawa, G. & Yamashiro, S. Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J. Cell Biol.140, 119–129 (1998). CASPubMedPubMed Central Google Scholar
Rey, M. et al. Association of the motor protein nonmuscle myosin heavy chain-IIA with the C terminus of the chemokine receptor CXCR4 in T lymphocytes. J. Immunol.169, 5410–5414 (2002). CASPubMed Google Scholar
Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol.154, 147–160 (2001). CASPubMedPubMed Central Google Scholar
Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell10, 1163–1178 (1999). CASPubMedPubMed Central Google Scholar
Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med.186, 153–158 (1997). CASPubMedPubMed Central Google Scholar
Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol.161, 417–427 (2003). ArticleCASPubMedPubMed Central Google Scholar
van Buul, J. D. et al. Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J. Biol. Chem.278, 30302–30310 (2003). CASPubMed Google Scholar
Haddad, E. et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood97, 33–38 (2001). CASPubMed Google Scholar
Vicente-Manzanares, M. et al. A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1α-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J. Immunol.168, 400–410 (2002). CASPubMed Google Scholar
Vicente-Manzanares, M. et al. Involvement of phosphatidylinositol 3-kinase in stromal-cell derived factor-1α-induced lymphocyte polarization and chemotaxis. J. Immunol.163, 4001–4012 (1999). CASPubMed Google Scholar
Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol.141, 1147–1157 (1998). CASPubMedPubMed Central Google Scholar
Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl Acad. Sci. USA99, 3603–3608 (2002). CASPubMedPubMed Central Google Scholar
Volkov, Y., Long, A., McGrath, S., Eidhin, D. N. & Kelleher, D. Crucial importance of PKC-β(I) in LFA-1-mediated locomotion of activated T cells. Nature Immunol.2, 508–514 (2001). CAS Google Scholar
Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol.4, 741–748 (2003). CAS Google Scholar
Sánchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J.18, 501–511 (1999). PubMedPubMed Central Google Scholar
del Pozo, M. A. et al. ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J. Cell Biol.137, 493–508 (1997). CASPubMedPubMed Central Google Scholar
Montoya, M. C. et al. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nature Immunol.3, 159–168 (2002). CAS Google Scholar
Serrador, J. M. et al. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J. Biol. Chem.277, 10400–10409 (2002). CASPubMed Google Scholar
Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol.140, 647–657 (1998). CASPubMedPubMed Central Google Scholar
Matsui, T., Yonemura, S., Tsukita, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol-4-phosphate 5-kinase and not ROCK kinases. Curr. Biol.9, 1259–1262 (1999). CASPubMed Google Scholar
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). The first report on supramolecular cluster formation at the interface between a T cell and an antigen-presenting cell (APC). CASPubMed Google Scholar
Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell94, 667–677 (1998). CASPubMed Google Scholar
Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem.273, 33588–33594 (1998). CASPubMed Google Scholar
Allenspach, E. J. et al. ERM-Dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity15, 739–750 (2001). CASPubMed Google Scholar
Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity15, 715–728 (2001). CASPubMed Google Scholar
Delon, J., Kaibuchi, K. & Germain, R. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity15, 691–701 (2001). CASPubMed Google Scholar
Itoh, K. et al. Negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp–EBP50–ERM assembly. J. Immunol.168, 541–544 (2002). CASPubMed Google Scholar
Gil, D., Schamel, W. W., Montoya, M. C., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell109, 901–912 (2002). CASPubMed Google Scholar
Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol.33, 790–797 (2003). CASPubMed Google Scholar
Krause, M. et al. Fyn binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/Vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol.149, 181–194 (2000). CASPubMedPubMed Central Google Scholar
Badour, K. et al. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity18, 141–154 (2003). This reference highlights the role of Wiskott-Aldrich syndrome protein (WASP)-related proteins and actin polymerization in the establishment of the immunological synapse. CASPubMed Google Scholar
Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase Cdc42. Proc. Natl Acad. Sci. USA92, 5027–5031 (1995). CASPubMedPubMed Central Google Scholar
Kuhn, J. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). Translocation of the microtubule-organizing centre (MTOC) to the contact area during the formation of the immunological synapse does not depend on microtubule shortening. Instead, it slides towards the interface and bounces from side to side to extend the secretory machinery. CASPubMed Google Scholar
Lowin-Kropf, B., Shapiro, V. S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol.140, 861–871 (1998). CASPubMedPubMed Central Google Scholar
Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement and neuronal migration. Cell114, 469–482 (2003). CASPubMed Google Scholar
Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem.273, 34954–34960 (1998). CASPubMed Google Scholar
Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates activstion of Rac signalling pathways in cells. J. Biol. Chem.274, 2279–2285 (1999). CASPubMed Google Scholar
van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem.276, 4948–4956 (2001). CASPubMed Google Scholar
Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). This paper shows the formation of the immunological synapse between cytotoxic T lymphocytes (CTLs) and their target cells and shows that CTLs acquire membrane components from the target cell through immunological-synapse bridges. CASPubMed Google Scholar
Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol.167, 4358–4367 (2001). CASPubMed Google Scholar
Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med.173, 1099–1109 (1991). CASPubMed Google Scholar
Clark, R. & Griffiths, G. M. Lytic granules, secretory lysosomes and disease. Curr. Opin. Immunol.15, 516–521 (2003). CASPubMed Google Scholar
Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol.4, 1111–1120 (2003). CAS Google Scholar
Nagakawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell103, 569–581 (2000). Google Scholar
Haddad, E. K., Wu, X. & Hammer, J. I. Henkart, P. A. Defective granule exocytosis in Rab27a-deficient lymphocyte from Ashen mice. J. Cell Biol.152, 835–842 (2001). CASPubMedPubMed Central Google Scholar
Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol.152, 825–834 (2001). CASPubMedPubMed Central Google Scholar
Fitzer-Attas, C. J. et al. Fcγ receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr and Lyn. J. Exp. Med.191, 669–682 (2000). CASPubMedPubMed Central Google Scholar
Crowley, M. T. et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med.186, 1027–1039 (1997). CASPubMedPubMed Central Google Scholar
Castellano, F. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol.9, 351–360 (1999). CASPubMed Google Scholar
Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood95, 2943–2946 (2000). CASPubMed Google Scholar
Swanson, J. A. et al. A contractile activity that closes phagosomes in macrophages. J. Cell Sci.112, 307–316 (1999). CASPubMed Google Scholar
Tuxworth, R. I. et al. A role for myosin VII in dynamic cell adhesion. Curr. Biol.11, 318–329 (2001). CASPubMed Google Scholar
Olazabal, I. M. et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol.12, 1413–1418 (2002). CASPubMed Google Scholar
Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol.8, 365–372 (1998). CASPubMed Google Scholar
Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol.2, 131–136 (2000). The elucidation of an important phagocytic pathway inCaenorhabditis elegansfor the clearance of apoptotic bodies. CASPubMed Google Scholar
Leverrier, Y. & Ridley, A. J. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr. Biol.11, 195–199 (2001). CASPubMed Google Scholar
Albert, M. L., Kim, J. I. & Birge, R. B. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol.2, 899–905 (2000). This paper shows an important role for a phagocytic pathway in the clearance of apoptotic bodies in mammalian cells. CASPubMed Google Scholar
Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell104, 43–56 (2001). CASPubMed Google Scholar
Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells. Cell93, 961–972 (1998). CASPubMed Google Scholar
Weber, M. L. & Krammer, P. H. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin. Immunol.15, 145–157 (2003). Google Scholar
Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J.19, 5123–5134 (2000). CASPubMedPubMed Central Google Scholar
Moreno de Alborán, I., Robles, M. S., Bras, A., Baena, E. & Martinez, A. C. Cell death during lymphocyte development and activation. Semin. Immunol.15, 125–133 (2003). Google Scholar
Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science255, 325–327 (1992). CASPubMed Google Scholar
Clayton, L. K. et al. T cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. EMBO J.16, 2282–2293 (1997). CASPubMedPubMed Central Google Scholar
Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol.3, 339–345 (2001). References 91 and 92 provide evidence that caspase-dependent cleavage of a RhoA effector regulates blebbing through the dysregulation of cortical tension. CASPubMed Google Scholar
Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol.3, 346–352 (2001). CASPubMed Google Scholar
Coleman, M. L. & Olson, M. F. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ.9, 493–504 (2002). CASPubMed Google Scholar
Mashima, T. et al. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene14, 1007–1012 (1997). CASPubMed Google Scholar
Tu, S. & Cerione, R. A. Cdc42 is a substrate for caspases and influences fas-induced apoptosis. J. Biol. Chem.276, 19656–19663 (2001). CASPubMed Google Scholar
Dong, L. Q. et al. Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc. Natl Acad. Sci. USA97, 5089–5094 (2000). CASPubMedPubMed Central Google Scholar
vanLeeuwen, F., vanDelft, S., Kain, H., vanDerKammen, R. & Collard, J. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nature Cell Biol.1, 242–248 (1999). CAS Google Scholar
Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science276, 1571–1574 (1997). CASPubMed Google Scholar
Gruenheid, S. & Finlay, B. B. Microbial pathogenesis and cytoskeletal function. Nature422, 775–781 (2003). CASPubMed Google Scholar
Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol.4, 766–773 (2002). CASPubMed Google Scholar
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell93, 815–826 (1998). A protein product of a bacterial gene activates RAC and CDC42, promoting actin polymerization. CASPubMed Google Scholar
Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature401, 293–297 (1999). CASPubMed Google Scholar
Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J.18, 4926–4934 (1999). CASPubMedPubMed Central Google Scholar
Zhou, D., Mooseker, M. & Galan, J. E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science283, 2092–2095 (1999). CASPubMed Google Scholar
Meresse, S. et al. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell. Microbiol.3, 567–577 (2001). CASPubMed Google Scholar
Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science281, 105–108 (1998). The protein ActA fromListeria monocytogenesrecruits cellular machinery and directly induces actin polymerization, constituting the basis of actin-dependent, intracellular bacteria-independent movement. CASPubMed Google Scholar
de Chastellier, C. & Berche, P. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun.62, 543–553 (1994). CASPubMedPubMed Central Google Scholar
McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science300, 1295–1297 (2003). CASPubMed Google Scholar
Igakura, T. et al. Spread of HTLV-1 between lymphocytes by virus-induced polarization of the cytoskeleton. Science299, 1713–1716 (2003). The first evidence on the role of the cytoskeleton on cell–cell spreading of viral particles. CASPubMed Google Scholar
Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature378, 636–638 (1995). CASPubMed Google Scholar
Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature401, 926–929 (1999). CASPubMed Google Scholar
Moss, B. & Ward, B. M. High-speed mass transit for poxviruses on microtubules. Nature Cell Biol.3, 245–246 (2001). Google Scholar
McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol.159, 441–452 (2002). CASPubMedPubMed Central Google Scholar
Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature420, 629–635 (2002). CASPubMed Google Scholar
Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein WASP regulate the actin cytoskeleton through Arp2/3 complex. Curr. Biol.8, 1347–1356 (1998). CASPubMed Google Scholar
Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J.17, 6932–6941 (1998). CASPubMedPubMed Central Google Scholar
Weaver, A. M., Young, M. E., Lee, W. -L. & Cooper, J. A. Integration of signals to the Arp2/3 complex. Curr. Opin. Cell Biol.15, 23–30 (2003). CASPubMed Google Scholar
Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol.160, 409–421 (2003). CASPubMedPubMed Central Google Scholar
Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J.16, 3044–3056 (1997). CASPubMedPubMed Central Google Scholar
Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol.13, 1335–1340 (2003). CASPubMed Google Scholar
Vicente-Manzanares, M. et al. The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes. J. Immunol.171, 1023–1034 (2003). CASPubMed Google Scholar
Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science285, 895–898 (1999). CASPubMed Google Scholar
Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol.1, 253–259 (1999). CASPubMed Google Scholar
Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature393, 805–809 (1998). CASPubMed Google Scholar
Sanders, L. C., Matsumura, F., Bokoch, G. M. & deLanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science283, 2083–2085 (1999). CASPubMed Google Scholar
Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol.147, 1023–1038 (1999). CASPubMedPubMed Central Google Scholar
Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem.271, 20246–20249 (1996). CASPubMed Google Scholar
Thrasher, A. J. WASp in immune-system organization and function. Nature Rev. Immunol.2, 635–646 (2002). CAS Google Scholar
Anton, I. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity16, 193–204 (2002). CASPubMed Google Scholar
Gomez, M., Kioussis, D. & Cantrell, D. A. The GTPase Rac-1 controls cell fate in the thymus by diverting thymocytes from positive to negative selection. Immunity15, 703–713 (2001). CASPubMed Google Scholar
Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity10, 183–196 (1999). CASPubMed Google Scholar
Yu, H., Leitenberg, D., Li, B. & Flavell, R. A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med.194, 915–926 (2001). CASPubMedPubMed Central Google Scholar
Henning, S. W., Galandrini, R., Hall, A. & Cantrell, D. A. The GTPase Rho has a critical regulatory role in thymus development. EMBO J.16, 2397–2407 (1997). CASPubMedPubMed Central Google Scholar