Neutrophil serine proteases: specific regulators of inflammation (original) (raw)
Dinauer, M. C., Lekstrom-Himes, J. A. & Dale, D. C. Inherited neutrophil disorders: molecular basis and new therapies. Hematology (Am. Soc. Hematol. Educ. Program), 303–318 (2000).
Faurschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect.5, 1317–1327 (2003). CASPubMed Google Scholar
Belaaouaj, A. et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Med.4, 615–618 (1998). The first study to show that mice deficient in neutrophil elastase are more susceptible to infection with Gram-negative bacteria than wild-type mice. CASPubMed Google Scholar
Reeves, E. P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature416, 291–297 (2002). This paper provides a new working model that features neutrophil serine proteases, not ROS, as the main agents responsible for the intracellular killing of bacteria. CASPubMed Google Scholar
Tkalcevic, J. et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity12, 201–210 (2000). This study shows that, compared with wild-type mice, mice deficient in cathepsin G and neutrophil elastase are more susceptible to certain fungal infections but more resistant to LPS-induced septic shock. CASPubMed Google Scholar
Schrijver, G., Schalkwijk, J., Robben, J. C., Assmann, K. J. & Koene, R. A. Antiglomerular basement membrane nephritis in beige mice. Deficiency of leukocytic neutral proteinases prevents the induction of albuminuria in the heterologous phase. J. Exp. Med.169, 1435–1448 (1989). CASPubMed Google Scholar
Liu, Z. et al. A critical role for neutrophil elastase in experimental bullous pemphigoid. J. Clin. Invest.105, 113–123 (2000). CASPubMedPubMed Central Google Scholar
Adkison, A. M., Raptis, S. Z., Kelley, D. G. & Pham, C. T. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J. Clin. Invest.109, 363–371 (2002). This paper shows that thein vivoproduction of the pro-inflammatory cytokines TNF and IL-1β is reduced in mice lacking DPPI or neutrophil elastase and cathepsin G. CASPubMedPubMed Central Google Scholar
Hu, Y. & Pham, C. T. Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. Arthritis Rheum.52, 2553–2558 (2005). CASPubMed Google Scholar
Shiflett, S. L., Kaplan, J. & Ward, D. M. Chediak-Higashi Syndrome: a rare disorder of lysosomes and lysosome related organelles. Pigment Cell Res.15, 251–257 (2002). CASPubMed Google Scholar
Owen, C. A., Campbell, M. A., Sannes, P. L., Boukedes, S. S. & Campbell, E. J. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J. Cell Biol.131, 775–789 (1995). This paper shows that neutrophil elastase and cathepsin G remain bound to the cell surface after release and that they escape inhibition by endogenous inhibitors. CASPubMed Google Scholar
Campbell, E. J., Campbell, M. A. & Owen, C. A. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J. Immunol.165, 3366–3374 (2000). CASPubMed Google Scholar
Zimmer, M. et al. Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc. Natl Acad. Sci. USA89, 8215–8219 (1992). CASPubMed Google Scholar
Belaaouaj, A., Walsh, B. C., Jenkins, N. A., Copeland, N. G. & Shapiro, S. D. Characterization of the mouse neutrophil elastase gene and localization to chromosome 10. Mamm. Genome8, 5–8 (1997). CASPubMed Google Scholar
Gabay, J. E. et al. Antibiotic proteins of human polymorphonuclear leukocytes. Proc. Natl Acad. Sci. USA86, 5610–5614 (1989). CASPubMed Google Scholar
Chertov, O. et al. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J. Exp. Med.186, 739–747 (1997). CASPubMedPubMed Central Google Scholar
Caughey, G. H. et al. The human mast cell chymase gene (CMA1): mapping to the cathepsin G/granzyme gene cluster and lineage-restricted expression. Genomics15, 614–620 (1993). CASPubMed Google Scholar
Heusel, J. W. et al. Molecular cloning, chromosomal location, and tissue-specific expression of the murine cathepsin G gene. Blood81, 1614–1623 (1993). CASPubMed Google Scholar
Garwicz, D., Lennartsson, A., Jacobsen, S. E., Gullberg, U. & Lindmark, A. Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model. Haematologica90, 38–44 (2005). CASPubMed Google Scholar
Shapiro, S. D., Campbell, E. J., Senior, R. M. & Welgus, H. G. Proteinases secreted by human mononuclear phagocytes. J. Rheumatol.27 (Suppl.), 95–98 (1991). CAS Google Scholar
Mayet, W. J., Csernok, E., Szymkowiak, C., Gross, W. L. & Meyer zum Buschenfelde, K. H. Human endothelial cells express proteinase 3, the target antigen of anticytoplasmic antibodies in Wegener's granulomatosis. Blood82, 1221–1229 (1993). CASPubMed Google Scholar
Schwarting, A. et al. Proteinase-3 mRNA expressed by glomerular epithelial cells correlates with crescent formation in Wegener's granulomatosis. Kidney Int.57, 2412–2422 (2000). CASPubMed Google Scholar
Brockmann, H. et al. Proteinase-3 as the major autoantigen of c-ANCA is strongly expressed in lung tissue of patients with Wegener's granulomatosis. Arthritis Res.4, 220–225 (2002). CASPubMedPubMed Central Google Scholar
Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA96, 8627–8632 (1999). CASPubMed Google Scholar
Wolters, P. J., Pham, C. T., Muilenburg, D. J., Ley, T. J. & Caughey, G. H. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J. Biol. Chem.276, 18551–18556 (2001). CASPubMed Google Scholar
Garwicz, D., Lindmark, A., Persson, A. M. & Gullberg, U. On the role of the proform-conformation for processing and intracellular sorting of human cathepsin G. Blood92, 1415–1422 (1998). CASPubMed Google Scholar
Salvesen, G. & Enghild, J. J. An unusual specificity in the activation of neutrophil serine proteinase zymogens. Biochemistry29, 5304–5308 (1990). CASPubMed Google Scholar
Rao, N. V., Rao, G. V., Marshall, B. C. & Hoidal, J. R. Biosynthesis and processing of proteinase 3 in U937 cells. Processing pathways are distinct from those of cathepsin G. J. Biol. Chem.271, 2972–2978 (1996). CASPubMed Google Scholar
Gullberg, U. et al. Carboxyl-terminal prodomain-deleted human leukocyte elastase and cathepsin G are efficiently targeted to granules and enzymatically activated in the rat basophilic/mast cell line RBL. J. Biol. Chem.270, 12912–12918 (1995). CASPubMed Google Scholar
Horwitz, M., Benson, K. F., Duan, Z., Li, F. Q. & Person, R. E. Hereditary neutropenia: dogs explain human neutrophil elastase mutations. Trends Mol. Med.10, 163–170 (2004). CASPubMed Google Scholar
Benson, K. F. et al. Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nature Genet.35, 90–96 (2003). CASPubMed Google Scholar
Niemann, C. U. et al. Localization of serglycin in human neutrophil granulocytes and their precursors. J. Leukoc. Biol.76, 406–415 (2004). CASPubMed Google Scholar
Salaun, C., James, D. J., Greaves, J. & Chamberlain, L. H. Plasma membrane targeting of exocytic SNARE proteins. Biochim. Biophys. Acta1693, 81–89 (2004). PubMed Google Scholar
Brumell, J. H. et al. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J. Immunol.155, 5750–5759 (1995). CASPubMed Google Scholar
Nabokina, S., Egea, G., Blasi, J. & Mollinedo, F. Intracellular location of SNAP-25 in human neutrophils. Biochem. Biophys. Res. Commun.239, 592–597 (1997). CASPubMed Google Scholar
Martin-Martin, B., Nabokina, S. M., Blasi, J., Lazo, P. A. & Mollinedo, F. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood96, 2574–2583 (2000). CASPubMed Google Scholar
Rest, R. F. Human neutrophil and mast cell proteases implicated in inflammation. Methods Enzymol.163, 309–327 (1988). CASPubMed Google Scholar
Williams, S. E., Brown, T. I., Roghanian, A. & Sallenave, J. M. SLPI and elafin: one glove, many fingers. Clin. Sci. (Lond.)110, 21–35 (2006). CAS Google Scholar
Huntington, J. A., Read, R. J. & Carrell, R. W. Structure of a serpin-protease complex shows inhibition by deformation. Nature407, 923–926 (2000). CASPubMed Google Scholar
Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell102, 647–655 (2000). CASPubMed Google Scholar
Churg, A. et al. α1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab. Invest.81, 1119–1131 (2001). CASPubMed Google Scholar
Senior, R. M., Griffin, G. L. & Mecham, R. P. Chemotactic activity of elastin-derived peptides. J. Clin. Invest.66, 859–862 (1980). CASPubMedPubMed Central Google Scholar
Weinrauch, Y., Drujan, D., Shapiro, S. D., Weiss, J. & Zychlinsky, A. Neutrophil elastase targets virulence factors of enterobacteria. Nature417, 91–94 (2002). CASPubMed Google Scholar
Shafer, W. M., Hubalek, F., Huang, M. & Pohl, J. Bactericidal activity of a synthetic peptide (CG 117–136) of human lysosomal cathepsin G is dependent on arginine content. Infect. Immun.64, 4842–4845 (1996). CASPubMedPubMed Central Google Scholar
Shafer, W. M. et al. Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens. Curr. Pharm. Des.8, 695–702 (2002). CASPubMed Google Scholar
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature415, 389–395 (2002). CASPubMed Google Scholar
Belaaouaj, A., Kim, K. S. & Shapiro, S. D. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science289, 1185–1188 (2000). CASPubMed Google Scholar
Hirche, T. O., Gaut, J. P., Heinecke, J. W. & Belaaouaj, A. Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J. Immunol.174, 1557–1565 (2005). CASPubMed Google Scholar
Pham, C. T., Ivanovich, J. L., Raptis, S. Z., Zehnbauer, B. & Ley, T. J. Papillon–Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J. Immunol.173, 7277–7281 (2004). CASPubMed Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science303, 1532–1535 (2004). CASPubMed Google Scholar
Sorensen, O. E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood97, 3951–3959 (2001). CASPubMed Google Scholar
Lopez-Boado, Y. S., Espinola, M., Bahr, S. & Belaaouaj, A. Neutrophil serine proteinases cleave bacterial flagellin, abrogating its host response-inducing activity. J. Immunol.172, 509–515 (2004). CASPubMed Google Scholar
Owen, C. A. & Campbell, E. J. The cell biology of leukocyte-mediated proteolysis. J. Leukoc. Biol.65, 137–150 (1999). CASPubMed Google Scholar
Cai, T. Q. & Wright, S. D. Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1, αMβ2) and modulates polymorphonuclear leukocyte adhesion. J. Exp. Med.184, 1213–1223 (1996). CASPubMed Google Scholar
David, A., Kacher, Y., Specks, U. & Aviram, I. Interaction of proteinase 3 with CD11b/CD18 (β2 integrin) on the cell membrane of human neutrophils. J. Leukoc. Biol.74, 551–557 (2003). CASPubMed Google Scholar
David, A., Fridlich, R. & Aviram, I. The presence of membrane proteinase 3 in neutrophil lipid rafts and its colocalization with FcγRIIIb and cytochrome b558. Exp. Cell Res.308, 156–165 (2005). CASPubMed Google Scholar
Kurschus, F. C., Bruno, R., Fellows, E., Falk, C. S. & Jenne, D. E. Membrane receptors are not required to deliver granzyme B during killer cell attack. Blood105, 2049–2058 (2005). CASPubMed Google Scholar
Carden, D. L. & Korthuis, R. J. Protease inhibition attenuates microvascular dysfunction in postischemic skeletal muscle. Am. J. Physiol.271, H1947–52 (1996). CASPubMed Google Scholar
Kawabata, K. et al. Delayed neutrophil elastase inhibition prevents subsequent progression of acute lung injury induced by endotoxin inhalation in hamsters. Am. J. Respir. Crit. Care Med.161, 2013–2018 (2000). CASPubMed Google Scholar
Kakimoto, K., Matsukawa, A., Yoshinaga, M. & Nakamura, H. Suppressive effect of a neutrophil elastase inhibitor on the development of collagen-induced arthritis. Cell. Immunol.165, 26–32 (1995). CASPubMed Google Scholar
Padrines, M., Wolf, M., Walz, A. & Baggiolini, M. Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett.352, 231–235 (1994). CASPubMed Google Scholar
Nufer, O., Corbett, M. & Walz, A. Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry38, 636–642 (1999). CASPubMed Google Scholar
Berahovich, R. D. et al. Proteolytic activation of alternative CCR1 ligands in inflammation. J. Immunol.174, 7341–7351 (2005). CASPubMed Google Scholar
Wittamer, V. et al. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol.175, 487–493 (2005). CASPubMed Google Scholar
Rao, R. M. et al. Elastase release by transmigrating neutrophils deactivates endothelial-bound SDF-1α and attenuates subsequent T lymphocyte transendothelial migration. J. Exp. Med.200, 713–724 (2004). CASPubMedPubMed Central Google Scholar
Ryu, O. H. et al. Proteolysis of macrophage inflammatory protein-1α isoforms LD78β and LD78α by neutrophil-derived serine proteases. J. Biol. Chem.280, 17415–17421 (2005). CASPubMed Google Scholar
Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature385, 729–733 (1997). CASPubMed Google Scholar
Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature356, 768–774 (1992). CASPubMed Google Scholar
Robache-Gallea, S. et al. In vitro processing of human tumor necrosis factor-α. J. Biol. Chem.270, 23688–23692 (1995). CASPubMed Google Scholar
Coeshott, C. et al. Converting enzyme-independent release of tumor necrosis factor α and IL-1β from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc. Natl Acad. Sci. USA96, 6261–6266 (1999). CASPubMed Google Scholar
Scuderi, P., Nez, P. A., Duerr, M. L., Wong, B. J. & Valdez, C. M. Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell. Immunol.135, 299–313 (1991). CASPubMed Google Scholar
Bank, U., Kupper, B., Reinhold, D., Hoffmann, T. & Ansorge, S. Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett.461, 235–240 (1999). CASPubMed Google Scholar
Young, R. E. et al. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J. Immunol.172, 4493–4502 (2004). This paper shows that mice deficient in neutrophil elastase have a defect in neutrophil recruitment and cytokine productionin vivowhen challenged with zymosan. CASPubMed Google Scholar
DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol.15, 572–582 (2003). CASPubMed Google Scholar
Raptis, S. Z., Shapiro, S. D., Simmons, P. M., Cheng, A. M. & Pham, C. T. Serine protease cathepsin G regulates adhesion-dependent neutrophil effector functions by modulating integrin clustering. Immunity22, 679–691 (2005). This paper shows that cathepsin G regulates neutrophil functions by modulating cellular activation and cytoskeletal rearrangement. CASPubMed Google Scholar
Si-Tahar, M. et al. Human neutrophil elastase proteolytically activates the platelet integrin αIIbβ3 through cleavage of the carboxyl terminus of the αIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J. Biol. Chem.272, 11636–11647 (1997). CASPubMed Google Scholar
Sambrano, G. R. et al. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem.275, 6819–6823 (2000). CASPubMed Google Scholar
Loew, D. et al. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry39, 10812–10822 (2000). CASPubMed Google Scholar
Cumashi, A. et al. Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets. Thromb. Haemost.85, 533–538 (2001). CASPubMed Google Scholar
Uehara, A., Muramoto, K., Takada, H. & Sugawara, S. Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J. Immunol.170, 5690–5696 (2003). This paper shows that proteinase 3 induces that production of cytokines through PAR2. CASPubMed Google Scholar
Uehara, A., Sugawara, Y., Sasano, T., Takada, H. & Sugawara, S. Proinflammatory cytokines induce proteinase 3 as membrane-bound and secretory forms in human oral epithelial cells and antibodies to proteinase 3 activate the cells through protease-activated receptor-2. J. Immunol.173, 4179–4189 (2004). CASPubMed Google Scholar
Walsh, D. E. et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J. Biol. Chem.276, 35494–35499 (2001). This paper shows that neutrophil elastase induces the production of CXCL8 through a TLR4 signalling pathway. CASPubMed Google Scholar
Devaney, J. M. et al. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett.544, 129–132 (2003). CASPubMed Google Scholar
Tsujimoto, H. et al. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis. Shock23, 39–44 (2005). CASPubMed Google Scholar
Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science285, 732–736 (1999). CASPubMed Google Scholar
Sun, R. et al. Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J. Immunol.173, 428–436 (2004). This paper shows that cathepsin G induces monocyte chemotaxis by binding FPR. CASPubMed Google Scholar
Fischer, B. M. & Voynow, J. A. Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am. J. Respir. Cell Mol. Biol.26, 447–452 (2002). CASPubMed Google Scholar
Shao, M. X., Ueki, I. F. & Nadel, J. A. Tumor necrosis factor α-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl Acad. Sci. USA100, 11618–11623 (2003). CASPubMed Google Scholar
Shao, M. X. & Nadel, J. A. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J. Immunol.175, 4009–4016 (2005). CASPubMed Google Scholar
Champagne, B., Tremblay, P., Cantin, A. & St Pierre, Y. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol.161, 6398–6405 (1998). CASPubMed Google Scholar
Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N. & Simmons, P. J. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood98, 1289–1297 (2001). CASPubMed Google Scholar
Ginzberg, H. H. et al. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am. J. Physiol. Gastrointest. Liver Physiol.281, G705–G717 (2001). CASPubMed Google Scholar
Abbott, R. E. et al. Augmented inflammatory responses and altered wound healing in cathepsin G-deficient mice. Arch. Surg.133, 1002–1006 (1998). CASPubMed Google Scholar
Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell111, 867–878 (2002). CASPubMed Google Scholar
Yang, J. J. et al. Internalization of proteinase 3 is concomitant with endothelial cell apoptosis and internalization of myeloperoxidase with generation of intracellular oxidants. Am. J. Pathol.158, 581–592 (2001). CASPubMedPubMed Central Google Scholar
Preston, G. A. et al. Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-κB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. J. Am. Soc. Nephrol.13, 2840–2849 (2002). CASPubMed Google Scholar
Oltmanns, U., Sukkar, M. B., Xie, S., John, M. & Chung, K. F. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. Am. J. Respir. Cell Mol. Biol.32, 334–341 (2005). CASPubMed Google Scholar
Bories, D., Raynal, M. C., Solomon, D. H., Darzynkiewicz, Z. & Cayre, Y. E. Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell59, 959–968 (1989). CASPubMed Google Scholar
Dublet, B. et al. Cleavage of p21/WAF1/CIP1 by proteinase 3 modulates differentiation of a monocytic cell line. Molecular analysis of the cleavage site. J. Biol. Chem.280, 30242–30253 (2005). CASPubMed Google Scholar
Toomes, C. et al. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nature Genet.23, 421–44 (1999). CASPubMed Google Scholar
Lane, A. A. & Ley, T. J. Neutrophil elastase cleaves PML-RARα and is important for the development of acute promyelocytic leukemia in mice. Cell115, 305–318 (2003). CASPubMed Google Scholar
Lane, A. A. & Ley, T. J. Neutrophil elastase is important for PML-retinoic acid receptor α activities in early myeloid cells. Mol. Cell. Biol.25, 23–33 (2005). CASPubMedPubMed Central Google Scholar
Preston, G. A., Yang, J. J., Xiao, H. & Falk, R. J. Understanding the pathogenesis of ANCA: where are we today? Cleve. Clin. J. Med.69 (Suppl. 2), S1151–S1154 (2002). Google Scholar