The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design (original) (raw)
Sugamura, K. et al. The interleukin-2 receptor γ chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu. Rev. Immunol.14, 179–205 (1996). ArticleCASPubMed Google Scholar
Noguchi, M. et al. Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science262, 1877–1880 (1993). ArticleCASPubMed Google Scholar
Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity14, 105–110 (2001). This Review provides an analysis of the similarities and differences in the functions of IL-2 and IL-15, as well as the mechanisms that underlie the distinct functions. CASPubMed Google Scholar
Waldmann, T. A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol.17, 19–49 (1999). ArticleCASPubMed Google Scholar
Fehniger, T. A. & Caligiuri, M. A. Interleukin 15: biology and relevance to human disease. Blood97, 14–32 (2001). This is an excellent review of IL-15 biology. It discusses the disorders of IL-15 in human diseases and considers the implications of these abnormalities for immunotherapy. ArticleCASPubMed Google Scholar
Bamford, R. N. et al. The interleukin (IL) 2 receptor β chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl Acad. Sci. USA91, 4940–4944 (1994). ArticleCASPubMedPubMed Central Google Scholar
Grabstein, K. H. et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science264, 965–968 (1994). ArticleCASPubMed Google Scholar
Giri, J. G. et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the α chain of the IL-2 receptor. EMBO J.14, 3654–3663 (1995). ArticleCASPubMedPubMed Central Google Scholar
Waldmann, T. A. The interleukin-2 receptor. J. Biol. Chem.266, 2681–2684 (1991). CASPubMed Google Scholar
Taniguchi, T. & Minami, Y. The IL-2/IL-2 receptor system: a current overview. Cell73, 5–8 (1993). ArticleCASPubMed Google Scholar
Miyazaki, T. et al. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc and lck cooperate in hematopoietic cell proliferation. Cell81, 223–231 (1995). ArticleCASPubMed Google Scholar
Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity8, 591–599 (1998). This was the first report to indicate that IL-15 has an important role in stimulation of the proliferation of CD8+CD44himemory T cells. ArticleCASPubMed Google Scholar
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCASPubMed Google Scholar
Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA97, 11445–11450 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fehniger, T. A., Cooper, M. A. & Caligiuri, M. A. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev.13, 169–183 (2002). ArticleCASPubMed Google Scholar
Carson, W. E. et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest.99, 937–943 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fontenot, J. D., Rassmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin-2 in FOXP3-expressing regulatory T cells. Nature Immunol.6, 1142–1151 (2005). ArticleCAS Google Scholar
D'Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nature Immunol.6, 1152–1159 (2005). ArticleCAS Google Scholar
Maloy, K. J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nature Immunol.6, 1071–1072 (2005). ArticleCAS Google Scholar
Schluns, K. S., Klonowski, K. D. & Lefrancois, L. Transregulation of memory CD8 T-cell proliferation by IL-15Rα+ bone marrow-derived cells. Blood103, 988–994 (2004). ArticleCASPubMed Google Scholar
Becker, T. C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med.195, 1541–1548 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J. Sci. Am.6, S2–S7 (2000). PubMed Google Scholar
Waldmann, T. A. et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood82, 1701–1712 (1993). CASPubMed Google Scholar
Morris, J. C. et al. Preclinical and Phase I clinical trial of blockade of IL-15 using Mikβ1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc. Natl Acad. Sci. USA103, 401–406 (2006). ArticleCASPubMed Google Scholar
Waldmann, T. A., Dubois, S., Muller, J., Goldman, C. & Damjanovich, S. in Biophysical Aspects of Transmembrane Signaling (ed. Damjanovich, S.) 97–121 (Springer, Heidelberg, 2005). Book Google Scholar
Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature352, 621–624 (1991). ArticleCASPubMed Google Scholar
Sadlack, B. et al. Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur. J. Immunol.24, 281–284 (1994). ArticleCASPubMed Google Scholar
Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). ArticleCASPubMed Google Scholar
Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med.191, 771–780 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kishimoto, T. et al. (eds) Leukocyte typing VI. White Cell Differentiation Antigens (Garland, New York, 1997). Google Scholar
Dubois, S. et al. Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2 versus IL-15-mediated proliferation of cells. Proc. Natl Acad. Sci. USA100, 14169–14174 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bulfone-Paus, S. et al. Death deflected: IL-15 inhibits TNF-α-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Rα chain. FASEB J.13, 1575–1585 (1999). ArticleCASPubMed Google Scholar
Damjanovich, S. et al. Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study. Proc. Natl Acad. Sci. USA94, 13134–13139 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity17, 537–547 (2002). This was the first study to show that IL-15 bound to IL-15Rα recycles through endosomal vesicles and that IL-15Rα on the surface of monocytes and DCs presents IL-15in transto NK cells and CD8+CD44himemory T cells. In this way, the study showed that IL-15 has an important role in the generation, persistence and differentiation of NK cells and CD8+CD44himemory T cells. ArticleCASPubMed Google Scholar
Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. & Ma, A. T-cell-independent interleukin 15Rα signals are required for bystander proliferation. J. Exp. Med.194, 1187–1194 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin-2. JAMA271, 907–913 (1994). ArticleCASPubMed Google Scholar
Munger, W. et al. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell. Immunol.165, 289–293 (1995). ArticleCASPubMed Google Scholar
Evans, R., Fuller, J. A., Christianson, G., Krupke, D. M. & Troutt, A. B. IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: the potential role of NK cell subpopulations. Cell. Immunol.179, 66–73 (1997). ArticleCASPubMed Google Scholar
Yajima, T. et al. Overexpression of interleukin-15 in vivo enhances antitumor activity against MHC class I-negative and -positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int. J. Cancer99, 573–578 (2002). ArticleCASPubMed Google Scholar
Kobayashi, H. et al. Role of _trans_-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood105, 721–727 (2005). ArticleCASPubMed Google Scholar
Oh, S., Berzofsky, J. A., Burke, D. S., Waldmann, T. A. & Perera, L. P. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc. Natl Acad. Sci. USA100, 3392–3397 (2003). In this study, vaccines that express IL-15 were found to induce long-lasting CD8+ T-cell-mediated immunity, whereas vaccines incorporating IL-2 elicited short-lived immunity. ArticleCASPubMedPubMed Central Google Scholar
Oh, S., Perera, L. P., Burke, D. S., Waldmann, T. A. & Berzofsky, J. A. IL-15/IL-15Rα-mediated avidity maturation of memory CD8+ T cells. Proc. Natl Acad. Sci. USA101, 15154–15159 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kutzler, M. A. et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J. Immunol.175, 112–123 (2005). ArticleCASPubMed Google Scholar
Nashan, B. et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet350, 1193–1198 (1997). ArticleCASPubMed Google Scholar
Kirkman, R. L. et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplantation51, 107–113 (1991). ArticleCASPubMed Google Scholar
Vincenti, F. et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N. Engl. J. Med.338, 161–165 (1998). This report of a Phase III clinical trial of daclizumab shows that it is effective for the reduction of acute renal-allograft rejection episodes in patients receiving a human renal transplant. On the basis of this study, the FDA approved daclizumab for use in renal organ-transplantation protocols. ArticleCASPubMed Google Scholar
Waldmann, T. A. et al. Radioimmunotherapy of interleukin-2Rα-expressing adult T-cell leukemia with yttrium-90-labeled anti-Tac. Blood86, 4063–4075 (1995). CASPubMed Google Scholar
Nussenblatt, R. B. et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a Phase I/II clinical trial. Proc. Natl Acad. Sci. USA96, 7462–7466 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β. Proc. Natl Acad. Sci. USA101, 8705–8708 (2004). This paper shows that treatment with daclizumab leads to a 78% reduction in new contrast-enhancing lesions in patients with multiple sclerosis who have failed to respond to treatment with IFNβ. ArticleCASPubMedPubMed Central Google Scholar
Waldmann, T. A. et al. Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sezary leukemia, and their distinction using anti-Tac. Monoclonal antibody identifying the human receptor for T cell growth factor. J. Clin. Invest.73, 1711–1718 (1984). ArticleCASPubMedPubMed Central Google Scholar
Waldmann, T. A. The meandering 45-year odyssey of a clinical immunologist. Annu. Rev. Immunol.21, 1–27 (2002). Article Google Scholar
McInnes, I. B., Leung, B. P., Sturrock, R. D., Field, M. & Liew, F. Y. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nature Med.3, 189–195 (1997). This study found that IL-15 effectively induces TNF production in patients with rheumatoid arthritis, through a process that requires the interaction of synovial cells and T cells. Article Google Scholar
Azimi, N., Nagai, M., Jacobson, S. & Waldmann, T. A. IL-15 plays a major role in the persistence of Tax-specific CD8 cells in HAM/TSP patients. Proc. Natl Acad. Sci. USA98, 14559–14564 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ruchatz, H., Leung, B. P., Wei, X. Q., McInnes, I. B. & Liew, F. Y. Soluble IL-15 receptor α-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J. Immunol.160, 5654–5660 (1998). CASPubMed Google Scholar
Kim, Y. S. et al. Targeting the IL-15 receptor with an antagonist IL-15 mutant/Fcγ2a protein blocks delayed-type hypersensitivity. J. Immunol.160, 5742–5748 (1998). CASPubMed Google Scholar
Baslund, B. et al. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum.52, 2686–2692 (2005). ArticleCASPubMed Google Scholar
Villadsen, L. S. et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest.112, 1571–1580 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mention, J. J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology125, 730–745 (2003). ArticleCASPubMed Google Scholar
Harada, S. et al. Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum.42, 1508–1516 (1999). ArticleCASPubMed Google Scholar
Oppenheimer-Marks, N., Brezinschek, R. I., Mohamadzadeh, M., Vita, R. & Lipsky, P. E. Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells in vitro and in the SCID mouse–human rheumatoid arthritis model in vivo. J. Clin. Invest.101, 1261–1272 (1998). ArticleCASPubMedPubMed Central Google Scholar
Losy, J., Niezgoda, A. & Zaremba, J. IL-15 is elevated in sera of patients with relapsing–remitting multiple sclerosis. Folia Neuropathol.40, 151–153 (2002). PubMed Google Scholar
Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity21, 357–366 (2004). ArticleCASPubMed Google Scholar
Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol.14, 397–440 (1996). ArticleCASPubMed Google Scholar
Guex-Crosier, Y. et al. Humanized antibodies against the α-chain of the IL-2 receptor and against the β-chain shared by the IL-2 and IL-15 receptors in a monkey uveitis model of autoimmune diseases. J. Immunol.158, 452–458 (1997). CASPubMed Google Scholar
Hakimi, J. et al. Humanized Mikβ1, a humanized antibody to the IL-2 receptor β-chain that acts synergistically with humanized anti-TAC. J. Immunol.151, 1075–1085 (1993). CASPubMed Google Scholar
Tinubu, S. A. et al. Humanized antibody directed to the IL-2 receptor β-chain prolongs primate cardiac allograft survival. J. Immunol.153, 4330–4338 (1994). CASPubMed Google Scholar
Leonard, W. J. in Cytokine Reference Vol. 2 (eds Oppenheim, J. J. & Feldmann, M.) 1439–1457 (Academic, San Diego, 2001). Google Scholar